Macaulay2 » Documentation
Packages » ConformalBlocks :: ConformalBlockVectorBundle
next | previous | forward | backward | up | index | toc

ConformalBlockVectorBundle -- the class of conformal block vector bundles on the moduli space of n-pointed genus g curves

Description

This type implements conformal block vector bundles on the moduli space of n-pointed genus g curves.

Conformal block vector bundles are implemented as hash tables. The key "LieAlgebra" records the Lie algebra used to define the conformal block. The key "Level" records the level. The key "Weights" records the weights. The key "Genus" records the $g$ in $\bar{M}_{g,n}$. The key "NumberOfPoints" records the number of marked points, i.e., the $n$ in $\bar{M}_{g,n}$.

An object of the "ConformalBlockVectorBundle" class can be created using the function conformalBlockVectorBundle.

Functions and methods returning an object of class ConformalBlockVectorBundle:

Methods that use an object of class ConformalBlockVectorBundle:

  • conformalBlockDegreeM04bar(ConformalBlockVectorBundle) -- see conformalBlockDegreeM04bar -- computes the degree of a conformal block bundle on $\bar{M}_{0,4}$
  • conformalBlockRank(ConformalBlockVectorBundle) -- see conformalBlockRank -- computes the rank of the conformal block vector bundle
  • expression(ConformalBlockVectorBundle) (missing documentation)
  • FCurveDotConformalBlockDivisor(List,ConformalBlockVectorBundle) -- see FCurveDotConformalBlockDivisor -- intersection of an F-curve with a conformal block divisor
  • net(ConformalBlockVectorBundle) (missing documentation)
  • symmetrizedConformalBlockDivisor(ConformalBlockVectorBundle) -- see symmetrizedConformalBlockDivisor -- computes the symmetrization of the first Chern class of a conformal block vector bundle

For the programmer

The object ConformalBlockVectorBundle is a type, with ancestor classes HashTable < Thing.


The source of this document is in ConformalBlocks.m2:887:0.