Macaulay2 » Documentation
Packages » ConformalBlocks :: conformalBlockRank
next | previous | forward | backward | up | index | toc

conformalBlockRank -- computes the rank of the conformal block vector bundle



This function uses propagation and factorization to recursively compute ranks in terms of the ranks on $\bar{M}_{0,3}$. These are determined by the so-called fusion rules and are computed via the function fusionCoefficient in the LieTypes package. See [Beauville] for details on these topics.

In the example below we compute the rank of the conformal block bundle $V(sl_3,2,(\omega_1,\omega_1,\omega_2,\omega_2))$.

i1 : sl_3=simpleLieAlgebra("A",2);
i2 : V=conformalBlockVectorBundle(sl_3,2,{{1,0},{1,0},{0,1},{0,1}},0)

o2 = V

o2 : Conformal block vector bundle on M-0-4-bar
i3 : conformalBlockRank(V)

o3 = 2

Ways to use conformalBlockRank :

For the programmer

The object conformalBlockRank is a method function.