Macaulay2 » Documentation
Packages » LieTypes :: fusionCoefficient
next | previous | forward | backward | up | index | toc

fusionCoefficient -- computes the multiplicity of W in the fusion product of U and V

Synopsis

Description

This function implements the Kac-Walton algorithm; see Di Francesco, Mathieu, and Senechal, Conformal Field Theory, Springer Graduate Texts in Theoretical Physics, Section 16.2.2.

Given three irreducible Lie algebra modules $U$, $V$, and $W$, the function returns the multiplicity of $W$ in the fusion product of $U$ and $V$ at level $l$. (We are abusing notation and terminology a little here; the fusion product is really a product for modules over an affine Lie algebra. However, since the Kac-Walton algorithm is defined entirely using the combinatorics of the root system of the underlying finite-dimensional Lie algebra, we may therefore use the Kac-Walton algorithm to define a product on Lie algebra modules as well.)

The example below shows that for $g=sl_3$ and $\lambda=2 \omega_1 + \omega_2$, $\mu= \omega_1 + 2 \omega_2$, and $\nu= \omega_1 + \omega_2$, the level 3 fusion product $V_{\lambda} \otimes_3 V_{\mu}$ contains one copy of $V_{\nu}$.

i1 : g=simpleLieAlgebra("A",2);
i2 : U=irreducibleLieAlgebraModule({2,1},g);
i3 : V=irreducibleLieAlgebraModule({1,2},g);
i4 : W=irreducibleLieAlgebraModule({1,1},g);
i5 : fusionCoefficient(U,V,W,3)

o5 = 1

Ways to use fusionCoefficient :

For the programmer

The object fusionCoefficient is a method function.