Macaulay2
»
Documentation
Packages
»
LieTypes
::
Index
next | previous | forward | backward | up |
index
|
toc
LieTypes : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
ω
-- construct the irreducible Lie algebra module with given highest weight
adams
-- Computes the action of the nth Adams operator on a Lie algebra module
adams(ZZ,LieAlgebraModule)
-- Computes the action of the nth Adams operator on a Lie algebra module
adjointModule
-- The adjoint module of a Lie algebra
adjointModule(LieAlgebra)
-- The adjoint module of a Lie algebra
branchingRule
-- A Lie algebra module viewed as a module over a Lie subalgebra
branchingRule(LieAlgebraModule,LieAlgebra)
-- A Lie algebra module viewed as a module over a Lie subalgebra
branchingRule(LieAlgebraModule,List)
-- A Lie algebra module viewed as a module over a Lie subalgebra
branchingRule(LieAlgebraModule,Matrix)
-- A Lie algebra module viewed as a module over a Lie subalgebra
cartanMatrix
-- Provide the Cartan matrix of a simple Lie algebra
cartanMatrix(LieAlgebra)
-- Provide the Cartan matrix of a simple Lie algebra
casimirScalar
-- computes the scalar by which the Casimir operator acts on an irreducible Lie algebra module
casimirScalar(LieAlgebraModule)
-- computes the scalar by which the Casimir operator acts on an irreducible Lie algebra module
character
-- Computes the character of a Lie algebra module
character(...,Strategy=>...)
-- Computes the character of a Lie algebra module
character(LieAlgebra,List)
-- Computes the character of a Lie algebra module
character(LieAlgebra,Vector)
-- Computes the character of a Lie algebra module
character(LieAlgebraModule)
-- Computes the character of a Lie algebra module
dim(LieAlgebraModule)
-- computes the dimension of a Lie algebra module as a vector space over the ground field
directSum(LieAlgebra)
-- Take the direct sum of Lie algebras
directSum(LieAlgebraModule)
-- direct sum of LieAlgebraModules
dual(LieAlgebraModule)
-- computes w* for a weight w
dualCoxeterNumber
-- returns the dual Coxeter number of a simple Lie algebra
dualCoxeterNumber(LieAlgebra)
-- returns the dual Coxeter number of a simple Lie algebra
dualCoxeterNumber(String,ZZ)
-- returns the dual Coxeter number of a simple Lie algebra
dynkinDiagram
-- Provide the Dynkin diagram of a simple Lie algebra
dynkinDiagram(LieAlgebra)
-- Provide the Dynkin diagram of a simple Lie algebra
exteriorPower(ZZ,LieAlgebraModule)
-- Computes the nth symmetric / exterior tensor power of a Lie algebra module
fusionCoefficient
-- computes the multiplicity of W in the fusion product of U and V
fusionCoefficient(LieAlgebraModule,LieAlgebraModule,LieAlgebraModule,ZZ)
-- computes the multiplicity of W in the fusion product of U and V
fusionProduct
-- computes the multiplicities of irreducibles in the decomposition of the fusion product of U and V
fusionProduct(LieAlgebraModule,LieAlgebraModule,ZZ)
-- computes the multiplicities of irreducibles in the decomposition of the fusion product of U and V
highestRoot
-- returns the highest root of a simple Lie algebra
highestRoot(LieAlgebra)
-- returns the highest root of a simple Lie algebra
irreducibleLieAlgebraModule
-- construct the irreducible Lie algebra module with given highest weight
irreducibleLieAlgebraModule(LieAlgebra,List)
-- construct the irreducible Lie algebra module with given highest weight
irreducibleLieAlgebraModule(LieAlgebra,Vector)
-- construct the irreducible Lie algebra module with given highest weight
isIrreducible
-- Whether a Lie algebra module is irreducible or not
isIrreducible(LieAlgebraModule)
-- Whether a Lie algebra module is irreducible or not
killingForm
-- computes the scaled Killing form applied to two weights
killingForm(LieAlgebra,List,List)
-- computes the scaled Killing form applied to two weights
killingForm(LieAlgebra,Vector,Vector)
-- computes the scaled Killing form applied to two weights
LieAlgebra
-- class for Lie algebras
LieAlgebra ++ LieAlgebra
-- Take the direct sum of Lie algebras
LieAlgebra == LieAlgebra
-- tests equality of LieAlgebra
LieAlgebraModule
-- class for Lie algebra modules
LieAlgebraModule ** LieAlgebraModule
-- tensor product of LieAlgebraModules
LieAlgebraModule ++ LieAlgebraModule
-- direct sum of LieAlgebraModules
LieAlgebraModule @ LieAlgebraModule
-- Take the tensor product of modules over different Lie algebras
LieAlgebraModule ^** ZZ
-- Computes the nth tensor power of a Lie algebra module
LieAlgebraModuleFromWeights
-- finds a Lie algebra module based on its weights
LieAlgebraModuleFromWeights(RingElement,LieAlgebra)
-- finds a Lie algebra module based on its weights
LieAlgebraModuleFromWeights(VirtualTally,LieAlgebra)
-- finds a Lie algebra module based on its weights
LieTypes
-- Common types for Lie groups and Lie algebras
LL
-- construct the irreducible Lie algebra module with given highest weight
multiplicity(List,LieAlgebraModule)
-- compute the multiplicity of a weight in a Lie algebra module
multiplicity(Vector,LieAlgebraModule)
-- compute the multiplicity of a weight in a Lie algebra module
new LieAlgebra from Matrix
-- Define a Lie algebra from its Cartan matrix
positiveCoroots
-- returns the positive (co)roots of a simple Lie algebra
positiveCoroots(LieAlgebra)
-- returns the positive (co)roots of a simple Lie algebra
positiveRoots
-- returns the positive (co)roots of a simple Lie algebra
positiveRoots(LieAlgebra)
-- returns the positive (co)roots of a simple Lie algebra
qdim
-- Compute principal specialization of character or quantum dimension
qdim(LieAlgebraModule)
-- Compute principal specialization of character or quantum dimension
qdim(LieAlgebraModule,ZZ)
-- Compute principal specialization of character or quantum dimension
simpleLieAlgebra
-- construct a simple Lie algebra
simpleLieAlgebra(String,ZZ)
-- construct a simple Lie algebra
simpleRoots
-- returns the simple roots of a simple Lie algebra
simpleRoots(LieAlgebra)
-- returns the simple roots of a simple Lie algebra
simpleRoots(String,ZZ)
-- returns the simple roots of a simple Lie algebra
starInvolution
-- computes w* for a weight w
starInvolution(LieAlgebraModule)
-- computes w* for a weight w
subLieAlgebra
-- Define a sub-Lie algebra of an existing one
subLieAlgebra(LieAlgebra,List)
-- Define a sub-Lie algebra of an existing one
subLieAlgebra(LieAlgebra,Matrix)
-- Define a sub-Lie algebra of an existing one
symmetricPower(ZZ,LieAlgebraModule)
-- Computes the nth symmetric / exterior tensor power of a Lie algebra module
tensorCoefficient
-- computes the multiplicity of W in U tensor V
tensorCoefficient(LieAlgebraModule,LieAlgebraModule,LieAlgebraModule)
-- computes the multiplicity of W in U tensor V
trivialModule
-- The trivial module of a Lie algebra
trivialModule(LieAlgebra)
-- The trivial module of a Lie algebra
weightDiagram
-- computes the weights in a Lie algebra module and their multiplicities
weightDiagram(...,Strategy=>...)
-- computes the weights in a Lie algebra module and their multiplicities
weightDiagram(LieAlgebra,List)
-- computes the weights in a Lie algebra module and their multiplicities
weightDiagram(LieAlgebra,Vector)
-- computes the weights in a Lie algebra module and their multiplicities
weightDiagram(LieAlgebraModule)
-- computes the weights in a Lie algebra module and their multiplicities
weylAlcove
-- the dominant integral weights of level less than or equal to l
weylAlcove(LieAlgebra,ZZ)
-- the dominant integral weights of level less than or equal to l
weylAlcove(String,ZZ,ZZ)
-- the dominant integral weights of level less than or equal to l
weylAlcove(ZZ,LieAlgebra)
-- the dominant integral weights of level less than or equal to l