Macaulay2 » Documentation
Packages » LieTypes :: simpleLieAlgebra
next | previous | forward | backward | up | index | toc

simpleLieAlgebra -- construct a simple Lie algebra

Synopsis

Description

The classification of simple Lie algebras over the complex numbers is well known. There are four infinite families (types $\mathfrak{a}_n$, $\mathfrak{b}_n$, $\mathfrak{c}_n$, $\mathfrak{d}_n$) corresponding to the Lie algebras $\mathfrak{sl}(n+1,\mathbb{C})$, $\mathfrak{so}(2n+1,\mathbb{C})$, $\mathfrak{sp}(2n,\mathbb{C})$, $\mathfrak{so}(2n,\mathbb{C})$ respectively, and five exceptional simple Lie algebras, $\mathfrak{e}_6$, $\mathfrak{e}_7$, $\mathfrak{e}_8$, $\mathfrak{f}_4$, $\mathfrak{g}_2$.

i1 : simpleLieAlgebra("A",1)

o1 = 𝔞
      1

o1 : simple LieAlgebra
i2 : simpleLieAlgebra("E",6)

o2 = 𝔢
      6

o2 : simple LieAlgebra

Ways to use simpleLieAlgebra :

For the programmer

The object simpleLieAlgebra is a method function.