Macaulay2 » Documentation
Packages » LieTypes :: weylAlcove
next | previous | forward | backward | up | index | toc

weylAlcove -- the dominant integral weights of level less than or equal to l

Synopsis

Description

Let $\mathbf{g}$ be a Lie algebra, and let $l$ be a nonnegative integer. Choose a Cartan subalgebra $\mathbf{h}$ and a base $\Delta= \{ \alpha_1,\ldots,\alpha_n\}$ of simple roots of $\mathbf{g}$. These choices determine a highest root $\theta$. (See highestRoot). Let $\mathbf{h}_{\mathbf{R}}^*$ be the real span of $\Delta$, and let $(,)$ denote the Killing form, normalized so that $(\theta,\theta)=2$. The fundamental Weyl chamber is $C^{+} = \{ \lambda \in \mathbf{h}_{\mathbf{R}}^* : (\lambda,\alpha_i) \ge 0, i=1,\ldots,n \}$. The fundamental Weyl alcove is the subset of the fundamental Weyl chamber such that $(\lambda,\theta) \leq l$. This function computes the set of integral weights in the fundamental Weyl alcove.

In the example below, we see that the Weyl alcove of $sl_3$ at level 3 contains 10 integral weights.

i1 : g=simpleLieAlgebra("A",2)

o1 = g

o1 : simple LieAlgebra
i2 : weylAlcove(g,3)

o2 = {{0, 0}, {0, 1}, {0, 2}, {0, 3}, {1, 0}, {1, 1}, {1, 2}, {2, 0}, {2, 1},
     ------------------------------------------------------------------------
     {3, 0}}

o2 : List

Ways to use weylAlcove :

For the programmer

The object weylAlcove is a method function.