Macaulay2 » Documentation
Packages » LieTypes :: LieAlgebraModule
next | previous | forward | backward | up | index | toc

LieAlgebraModule -- class for Lie algebra modules

Description

This class represents Lie algebra modules. Currently only modules over semi-simple Lie algebras over the complex numbers are supported. An object of type LieAlgebraModule is a hash table recording the Lie algebra and the decomposition of the module into irreducible Lie algebra modules, which are indexed by their highest weights.

i1 : g=simpleLieAlgebra("A",2)

o1 = g

o1 : simple LieAlgebra
i2 : M=irreducibleLieAlgebraModule(g,{1,1})

o2 = M

o2 : irreducible LieAlgebraModule over g

Functions and methods returning an object of class LieAlgebraModule:

  • adams -- Computes the action of the nth Adams operator on a Lie algebra module
  • adjointModule -- The adjoint module of a Lie algebra
  • branchingRule -- A Lie algebra module viewed as a module over a Lie subalgebra
  • fusionProduct -- computes the multiplicities of irreducibles in the decomposition of the fusion product of U and V
  • irreducibleLieAlgebraModule -- construct the irreducible Lie algebra module with given highest weight
  • LieAlgebraModuleFromWeights -- finds a Lie algebra module based on its weights
  • trivialModule -- The trivial module of a Lie algebra
  • zeroModule -- The zero module of a Lie algebra

Methods that use an object of class LieAlgebraModule:

  • adams(ZZ,LieAlgebraModule) -- see adams -- Computes the action of the nth Adams operator on a Lie algebra module
  • branchingRule(LieAlgebraModule,LieAlgebra) -- see branchingRule -- A Lie algebra module viewed as a module over a Lie subalgebra
  • branchingRule(LieAlgebraModule,List) -- see branchingRule -- A Lie algebra module viewed as a module over a Lie subalgebra
  • branchingRule(LieAlgebraModule,Matrix) -- see branchingRule -- A Lie algebra module viewed as a module over a Lie subalgebra
  • casimirScalar(LieAlgebraModule) -- see casimirScalar -- computes the scalar by which the Casimir operator acts on an irreducible Lie algebra module
  • character(LieAlgebraModule) -- see character -- Computes the character of a Lie algebra module
  • dim(LieAlgebraModule) -- computes the dimension of a Lie algebra module as a vector space over the ground field
  • fusionCoefficient(LieAlgebraModule,LieAlgebraModule,LieAlgebraModule,ZZ) -- see fusionCoefficient -- computes the multiplicity of W in the fusion product of U and V
  • fusionProduct(LieAlgebraModule,LieAlgebraModule,ZZ) -- see fusionProduct -- computes the multiplicities of irreducibles in the decomposition of the fusion product of U and V
  • isIrreducible(LieAlgebraModule) -- see isIrreducible -- Whether a Lie algebra module is irreducible or not
  • isIsomorphic(LieAlgebraModule,LieAlgebraModule) (missing documentation)
  • LieAlgebraModule ** LieAlgebraModule -- tensor product of LieAlgebraModules
  • directSum(LieAlgebraModule) -- see LieAlgebraModule ++ LieAlgebraModule -- direct sum of LieAlgebraModules
  • LieAlgebraModule ++ LieAlgebraModule -- direct sum of LieAlgebraModules
  • LieAlgebraModule @ LieAlgebraModule -- Take the tensor product of modules over different Lie algebras
  • LieAlgebraModule ^ ZZ (missing documentation)
  • LieAlgebraModule ^** ZZ -- Computes the nth tensor power of a Lie algebra module
  • LieAlgebraModule _ LieAlgebraModule -- see LieAlgebraModule _ ZZ -- Pick out one irreducible submodule of a Lie algebra module
  • LieAlgebraModule _ List -- see LieAlgebraModule _ ZZ -- Pick out one irreducible submodule of a Lie algebra module
  • LieAlgebraModule _ Vector -- see LieAlgebraModule _ ZZ -- Pick out one irreducible submodule of a Lie algebra module
  • LieAlgebraModule _ ZZ -- Pick out one irreducible submodule of a Lie algebra module
  • LieAlgebraModule _* -- List irreducible submodules of a Lie algebra module
  • qdim(LieAlgebraModule) -- see qdim -- Compute principal specialization of character or quantum dimension
  • qdim(LieAlgebraModule,ZZ) -- see qdim -- Compute principal specialization of character or quantum dimension
  • dual(LieAlgebraModule) -- see starInvolution -- computes w* for a weight w
  • starInvolution(LieAlgebraModule) -- see starInvolution -- computes w* for a weight w
  • exteriorPower(ZZ,LieAlgebraModule) -- see symmetricPower(ZZ,LieAlgebraModule) -- Computes the nth symmetric / exterior tensor power of a Lie algebra module
  • symmetricPower(ZZ,LieAlgebraModule) -- Computes the nth symmetric / exterior tensor power of a Lie algebra module
  • tensorCoefficient(LieAlgebraModule,LieAlgebraModule,LieAlgebraModule) -- see tensorCoefficient -- computes the multiplicity of W in U tensor V
  • toExternalString(LieAlgebraModule) (missing documentation)
  • toString(LieAlgebraModule) (missing documentation)
  • weightDiagram(LieAlgebraModule) -- see weightDiagram -- computes the weights in a Lie algebra module and their multiplicities

For the programmer

The object LieAlgebraModule is a type, with ancestor classes HashTable < Thing.


The source of this document is in LieTypes.m2:1878:0.