tensorCoefficient(U,V,W)
This function implements the Racah-Speiser algorithm; see Di Francesco, Mathieu, and Senechal, Conformal Field Theory, Springer Graduate Texts in Theoretical Physics, Section 13.5.2.
Given three irreducible Lie algebra modules $U$, $V$, and $W$, the function returns the multiplicity of $W$ in $U \otimes V$. In Type A, these are related to the Littlewood-Richardson coefficients (though in this package, irreducible representations are indexed by the Dynkin labels of their highest weights, rather than by partitions).
The example below shows that for $g=sl_3$ and $\lambda=2 \omega_1 + \omega_2$, $\mu= \omega_1 + 2 \omega_2$, and $\nu= 2 \omega_1 + 2 \omega_2$, the tensor product of $sl_3$ modules $V_{\lambda} \otimes V_{\mu}$ contains two copies of $V_{\nu}$.
|
|
|
|
|
The object tensorCoefficient is a method function.