Macaulay2 » Documentation
Packages » Cremona :: EulerCharacteristic
next | previous | forward | backward | up | index | toc

EulerCharacteristic -- topological Euler characteristic of a (smooth) projective variety

Synopsis

Description

This is an application of the method SegreClass. See also the corresponding methods in the packages CSM-A, by P. Aluffi, and CharacteristicClasses, by M. Helmer and C. Jost.

In general, even if the input ideal defines a singular variety $X$, the returned value equals the degree of the component of dimension 0 of the Chern-Fulton class of $X$. The Euler characteristic of a singular variety can be computed via the method ChernSchwartzMacPherson.

In the example below, we compute the Euler characteristic of $\mathbb{G}(1,4)\subset\mathbb{P}^{9}$, using both a probabilistic and a non-probabilistic approach.

i1 : I = Grassmannian(1,4,CoefficientRing=>ZZ/190181);

                ZZ
o1 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
              190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
i2 : time EulerCharacteristic I
 -- used 0.231771s (cpu); 0.143287s (thread); 0s (gc)

o2 = 10
i3 : time EulerCharacteristic(I,Certify=>true)
 -- used 0.010765s (cpu); 0.0104813s (thread); 0s (gc)
Certify: output certified!

o3 = 10

Caveat

No test is made to see if the projective variety is smooth.

See also

Ways to use EulerCharacteristic:

For the programmer

The object EulerCharacteristic is a method function with options.