i1 : R = QQ[x_0..x_3]; S = QQ[y_0..y_4]; T = QQ[z_0..z_4];
|
i4 : phi = rationalMap(R,S,{x_0*x_2,x_0*x_3,x_1*x_2,x_1*x_3,x_2*x_3})
o4 = -- rational map --
source: Proj(QQ[x , x , x , x ])
0 1 2 3
target: Proj(QQ[y , y , y , y , y ])
0 1 2 3 4
defining forms: {
x x ,
0 2
x x ,
0 3
x x ,
1 2
x x ,
1 3
x x
2 3
}
o4 : RationalMap (quadratic rational map from PP^3 to PP^4)
|
i5 : psi = rationalMap(S,T,{y_0*y_3,-y_2*y_3,y_1*y_2,y_2*y_4,-y_3*y_4})
o5 = -- rational map --
source: Proj(QQ[y , y , y , y , y ])
0 1 2 3 4
target: Proj(QQ[z , z , z , z , z ])
0 1 2 3 4
defining forms: {
y y ,
0 3
-y y ,
2 3
y y ,
1 2
y y ,
2 4
-y y
3 4
}
o5 : RationalMap (quadratic rational map from PP^4 to PP^4)
|
i6 : phi * psi
o6 = -- rational map --
source: Proj(QQ[x , x , x , x ])
0 1 2 3
target: Proj(QQ[z , z , z , z , z ])
0 1 2 3 4
defining forms: {
x ,
0
-x ,
1
x ,
0
x ,
2
-x
3
}
o6 : RationalMap (linear rational map from PP^3 to PP^4)
|
i7 : (map phi) * (map psi)
2 2 2
o7 = map (R, T, {x x x x , -x x x , x x x x , x x x , -x x x })
0 1 2 3 1 2 3 0 1 2 3 1 2 3 1 2 3
o7 : RingMap R <-- T
|