i1 : R = ZZ/101[a,b,c,d]
o1 = R
o1 : PolynomialRing
|
i2 : A = koszulComplexDGA({a,b})
o2 = {Ring => R }
Underlying algebra => R[T ..T ]
1 2
Differential => {a, b}
o2 : DGAlgebra
|
i3 : B = koszulComplexDGA({c,d})
o3 = {Ring => R }
Underlying algebra => R[T ..T ]
1 2
Differential => {c, d}
o3 : DGAlgebra
|
i4 : C = A ** B
o4 = {Ring => R }
Underlying algebra => R[T ..T ]
1 4
Differential => {a, b, c, d}
o4 : DGAlgebra
|
i5 : Cdd = toComplex C
1 4 6 4 1
o5 = R <-- R <-- R <-- R <-- R
0 1 2 3 4
o5 : ChainComplex
|
i6 : Cdd.dd
1 4
o6 = 0 : R <--------------- R : 1
| a b c d |
4 6
1 : R <----------------------------- R : 2
{1} | -b -c 0 -d 0 0 |
{1} | a 0 -c 0 -d 0 |
{1} | 0 a b 0 0 -d |
{1} | 0 0 0 a b c |
6 4
2 : R <----------------------- R : 3
{2} | c d 0 0 |
{2} | -b 0 d 0 |
{2} | a 0 0 d |
{2} | 0 -b -c 0 |
{2} | 0 a 0 -c |
{2} | 0 0 a b |
4 1
3 : R <-------------- R : 4
{3} | -d |
{3} | c |
{3} | -b |
{3} | a |
o6 : ChainComplexMap
|