Macaulay2 » Documentation
Packages » DGAlgebras :: DGAlgebra
next | previous | forward | backward | up | index | toc

DGAlgebra -- The class of all DGAlgebras

Description

Some common ways to create DGAlgebras include koszulComplexDGA, freeDGAlgebra, setDiff, and acyclicClosure.

See also

Functions and methods returning an object of class DGAlgebra:

  • acyclicClosure -- Compute the acyclic closure of a DGAlgebra.
  • adjoinVariables -- Adjoins variables to make the specified cycles boundaries.
  • freeDGAlgebra -- Constructs a DGAlgebra
  • killCycles -- Adjoins variables to make non-bounding cycles boundaries in the lowest positive degree with nontrivial homology.
  • koszulComplexDGA -- Returns the Koszul complex as a DGAlgebra
  • setDiff -- Sets the differential of a DGAlgebra manually.

Methods that use an object of class DGAlgebra:

  • acyclicClosure(DGAlgebra) -- see acyclicClosure -- Compute the acyclic closure of a DGAlgebra.
  • adjoinVariables(DGAlgebra,List) -- see adjoinVariables -- Adjoins variables to make the specified cycles boundaries.
  • blockDiff(DGAlgebra,ZZ) -- see blockDiff -- prepares a map for display
  • DGAlgebra ** DGAlgebra -- Tensor product of a DGAlgebra and another ring.
  • DGAlgebra ** Ring -- Tensor product of a DGAlgebra and another ring.
  • dgAlgebraMap(DGAlgebra,DGAlgebra,Matrix) -- see dgAlgebraMap -- Define a DG algebra map between DG algebras.
  • dgAlgebraMultMap(DGAlgebra,RingElement) -- see dgAlgebraMultMap -- Returns the chain map corresponding to multiplication by a cycle.
  • diff(DGAlgebra,RingElement) -- Computes the differential of a ring element in a DGAlgebra
  • displayBlockDiff(DGAlgebra,Array,Array) -- see displayBlockDiff -- Shows natural decomposition of a map in the Tate resolution
  • displayBlockDiff(DGAlgebra,List,List) -- see displayBlockDiff -- Shows natural decomposition of a map in the Tate resolution
  • displayBlockDiff(DGAlgebra,VisibleList) -- see displayBlockDiff -- Shows natural decomposition of a map in the Tate resolution
  • displayBlockDiff(DGAlgebra,ZZ) -- see displayBlockDiff -- Shows natural decomposition of a map in the Tate resolution
  • findNaryTrivialMasseyOperation(DGAlgebra,List,HashTable,ZZ) -- see findTrivialMasseyOperation -- Finds a trivial Massey operation on a set of generators of H(A)
  • findTrivialMasseyOperation(DGAlgebra) -- see findTrivialMasseyOperation -- Finds a trivial Massey operation on a set of generators of H(A)
  • getBasis(ZZ,DGAlgebra) -- see getBasis -- Get a basis for a particular homological degree of a DG algebra.
  • getBoundaryPreimage(DGAlgebra,List) -- see getBoundaryPreimage -- Attempt to find a preimage of a boundary under the differential of a DGAlgebra.
  • getBoundaryPreimage(DGAlgebra,RingElement) -- see getBoundaryPreimage -- Attempt to find a preimage of a boundary under the differential of a DGAlgebra.
  • getGenerators(DGAlgebra) -- see getGenerators -- Returns a list of cycles whose images generate HH(A) as an algebra
  • HH DGAlgebra -- Compute the homology algebra of a DGAlgebra.
  • HH_ZZ DGAlgebra -- Computes the homology of a DG algebra as a module
  • homologyAlgebra(DGAlgebra) -- see homologyAlgebra -- Compute the homology algebra of a DGAlgebra.
  • homologyClass(DGAlgebra,RingElement) -- see homologyClass -- Computes the element of the homology algebra corresponding to a cycle in a DGAlgebra.
  • homologyModule(DGAlgebra,Module) -- see homologyModule -- Compute the homology of a DGModule as a module over a DGAlgebra.
  • isAcyclic(DGAlgebra) -- see isAcyclic -- Determines if a DGAlgebra is acyclic.
  • isHomogeneous(DGAlgebra) -- Determine if the DGAlgebra respects the gradings of the ring it is defined over.
  • isHomologyAlgebraTrivial(DGAlgebra) -- see isHomologyAlgebraTrivial -- Determines if the homology algebra of a DGAlgebra is trivial
  • killCycles(DGAlgebra) -- see killCycles -- Adjoins variables to make non-bounding cycles boundaries in the lowest positive degree with nontrivial homology.
  • liftToDGMap(DGAlgebra,DGAlgebra,RingMap) -- see liftToDGMap -- Lift a ring homomorphism in degree zero to a DG algebra morphism
  • masseyTripleProduct(DGAlgebra,RingElement,RingElement,RingElement) -- see masseyTripleProduct -- Computes the Massey triple product of a set of cycles or homology classes
  • masseyTripleProduct(DGAlgebra,ZZ,ZZ,ZZ) -- Computes the matrix representing all triple Massey operations.
  • maxDegree(DGAlgebra) -- see maxDegree -- Computes the maximum homological degree of a DGAlgebra
  • net(DGAlgebra) -- Outputs the pertinent information about a DGAlgebra
  • setDiff(DGAlgebra,List) -- see setDiff -- Sets the differential of a DGAlgebra manually.
  • toComplex(DGAlgebra) -- see toComplex -- Converts a DGAlgebra to a Complex
  • toComplex(DGAlgebra,ZZ) -- Converts a DGAlgebra to a Complex
  • zerothHomology(DGAlgebra) -- see zerothHomology -- Compute the zeroth homology of the DGAlgebra A as a ring.

For the programmer

The object DGAlgebra is a type, with ancestor classes MutableHashTable < HashTable < Thing.


The source of this document is in DGAlgebras.m2:1679:0.