next | previous | forward | backward | up | index | toc

## Synopsis

• Usage:
B = adjoinVariables(A,cycleList)
• Inputs:
• Outputs:

## Description

 i1 : R = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3-d^4} o1 = R o1 : QuotientRing i2 : A = koszulComplexDGA(R) o2 = {Ring => R } Underlying algebra => R[T ..T ] 1 4 Differential => {a, b, c, d} o2 : DGAlgebra i3 : A.diff o3 = map (R[T ..T ], R[T ..T ], {a, b, c, d, a, b, c, d}) 1 4 1 4 o3 : RingMap R[T ..T ] <-- R[T ..T ] 1 4 1 4 i4 : prune homology(1,A) o4 = cokernel | d c b a 0 0 0 0 0 0 0 0 | | 0 0 0 0 d c b a 0 0 0 0 | | 0 0 0 0 0 0 0 0 d c b a | 3 o4 : R-module, quotient of R i5 : B = adjoinVariables(A,{a^2*T_1}) o5 = {Ring => R } Underlying algebra => R[T ..T ] 1 5 2 Differential => {a, b, c, d, a T } 1 o5 : DGAlgebra i6 : B.diff 2 o6 = map (R[T ..T ], R[T ..T ], {a, b, c, d, a T , a, b, c, d}) 1 5 1 5 1 o6 : RingMap R[T ..T ] <-- R[T ..T ] 1 5 1 5 i7 : prune homology(1,B) o7 = cokernel | d c b a 0 0 0 0 | | 0 0 0 0 d c b a | 2 o7 : R-module, quotient of R