i1 : R = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3-d^4}
o1 = R
o1 : QuotientRing
|
i2 : A = koszulComplexDGA(R)
o2 = {Ring => R }
Underlying algebra => R[T ..T ]
1 4
Differential => {a, b, c, d}
o2 : DGAlgebra
|
i3 : A.diff
o3 = map (R[T ..T ], R[T ..T ], {a, b, c, d, a, b, c, d})
1 4 1 4
o3 : RingMap R[T ..T ] <-- R[T ..T ]
1 4 1 4
|
i4 : prune homology(1,A)
o4 = cokernel | d c b a 0 0 0 0 0 0 0 0 |
| 0 0 0 0 d c b a 0 0 0 0 |
| 0 0 0 0 0 0 0 0 d c b a |
3
o4 : R-module, quotient of R
|
i5 : B = adjoinVariables(A,{a^2*T_1})
o5 = {Ring => R }
Underlying algebra => R[T ..T ]
1 5
2
Differential => {a, b, c, d, a T }
1
o5 : DGAlgebra
|
i6 : B.diff
2
o6 = map (R[T ..T ], R[T ..T ], {a, b, c, d, a T , a, b, c, d})
1 5 1 5 1
o6 : RingMap R[T ..T ] <-- R[T ..T ]
1 5 1 5
|
i7 : prune homology(1,B)
o7 = cokernel | d c b a 0 0 0 0 |
| 0 0 0 0 d c b a |
2
o7 : R-module, quotient of R
|