i1 : R = ZZ/101[x,y,z,w]/(ideal"x3,y3,z3,x2yz")
o1 = R
o1 : QuotientRing
|
i2 : acyclicClosure R
o2 = {Ring => R }
Underlying algebra => R[T ..T ]
1 17
2 2 2 2 2 2 2 2 2 2
Differential => {x, y, z, w, x T , y T , z T , x*y*z*T , y*z*T , z T , y T , z T , y T , -x T T , -x*y*z*T T , -x*y*z*T T , y T - z T }
1 2 3 1 5 8 8 9 9 1 8 1 7 1 6 10 11
o2 : DGAlgebra
|
i3 : acyclicClosure(R,EndDegree => 3)
o3 = {Ring => R }
Underlying algebra => R[T ..T ]
1 17
2 2 2 2 2 2 2 2 2 2
Differential => {x, y, z, w, x T , y T , z T , x*y*z*T , y*z*T , z T , y T , z T , y T , -x T T , -x*y*z*T T , -x*y*z*T T , y T - z T }
1 2 3 1 5 8 8 9 9 1 8 1 7 1 6 10 11
o3 : DGAlgebra
|