isHomogeneous(D)
This function returns true if the divisor is graded (homogeneous), otherwise it returns false.
i1 : R = QQ[x, y, z];
i2 : D = divisor({1, 2, 3}, {ideal(x * y - z^2), ideal(y * z - x^2), ideal(x * z - y^2)}) o2 = Div(x*y-z^2) + 2*Div(-x^2+y*z) + 3*Div(-y^2+x*z) o2 : WeilDivisor on R
i3 : isHomogeneous( D ) o3 = true
i4 : R = QQ[x, y, z];
i5 : D = divisor({1, 2}, {ideal(x * y - z^2), ideal(y^2 - z^3)}) o5 = Div(x*y-z^2) + 2*Div(-z^3+y^2) o5 : WeilDivisor on R
i6 : isHomogeneous( D ) o6 = false