Macaulay2
»
Documentation
Packages
»
Divisor
::
Index
next | previous | forward | backward | up |
index
|
toc
Divisor : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
- BasicDivisor
-- add or subtract two divisors, or negate a divisor
AmbientRing
-- an option used to tell divisor construction that a particular ambient ring is expected.
applyToCoefficients
-- apply a function to the coefficients of a divisor
applyToCoefficients(...,CoefficientType=>...)
-- apply a function to the coefficients of a divisor
applyToCoefficients(...,Safe=>...)
-- apply a function to the coefficients of a divisor
applyToCoefficients(BasicDivisor,Function)
-- apply a function to the coefficients of a divisor
baseLocus
-- compute the locus where a graded module (or O(D) of a Weil divisor) is not globally generated
baseLocus(Module)
-- compute the locus where a graded module (or O(D) of a Weil divisor) is not globally generated
baseLocus(WeilDivisor)
-- compute the locus where a graded module (or O(D) of a Weil divisor) is not globally generated
BasicDivisor
-- the Types of divisors
BasicDivisor + BasicDivisor
-- add or subtract two divisors, or negate a divisor
BasicDivisor - BasicDivisor
-- add or subtract two divisors, or negate a divisor
canonicalDivisor
-- compute a canonical divisor of a ring
canonicalDivisor(...,IsGraded=>...)
-- compute a canonical divisor of a ring
canonicalDivisor(Ring)
-- compute a canonical divisor of a ring
ceiling(RWeilDivisor)
-- produce a WeilDivisor whose coefficients are ceilings or floors of the divisor
cleanSupport
-- removes primes with coefficient zero from a divisor
cleanSupport(BasicDivisor)
-- removes primes with coefficient zero from a divisor
clearCache
-- creates a new divisor with most entries from the cache removed
clearCache(BasicDivisor)
-- creates a new divisor with most entries from the cache removed
coefficient(BasicList,BasicDivisor)
-- get the coefficient of an ideal for a fixed divisor
coefficient(Ideal,BasicDivisor)
-- get the coefficient of an ideal for a fixed divisor
coefficients(BasicDivisor)
-- get the list of coefficients of a divisor
CoefficientType
-- an option used to tell divisor construction that a particular type of coefficients are expected.
Divisor
-- divisors
divisor
-- constructor for (Weil/Q/R)-divisors
divisor(...,AmbientRing=>...)
-- constructor for (Weil/Q/R)-divisors
divisor(...,CoefficientType=>...)
-- constructor for (Weil/Q/R)-divisors
divisor(...,IsGraded=>...)
-- constructor for (Weil/Q/R)-divisors
divisor(...,Section=>...)
-- constructor for (Weil/Q/R)-divisors
divisor(BasicList)
-- constructor for (Weil/Q/R)-divisors
divisor(BasicList,BasicList)
-- constructor for (Weil/Q/R)-divisors
divisor(Ideal)
-- constructor for (Weil/Q/R)-divisors
divisor(Matrix)
-- constructor for (Weil/Q/R)-divisors
divisor(Module)
-- constructor for (Weil/Q/R)-divisors
divisor(RingElement)
-- constructor for (Weil/Q/R)-divisors
dualize
-- finds an ideal or module isomorphic to Hom(M, R)
dualize(...,KnownDomain=>...)
-- finds an ideal or module isomorphic to Hom(M, R)
dualize(...,Strategy=>...)
-- finds an ideal or module isomorphic to Hom(M, R)
dualize(Ideal)
-- finds an ideal or module isomorphic to Hom(M, R)
dualize(Module)
-- finds an ideal or module isomorphic to Hom(M, R)
embedAsIdeal
-- embed a module as an ideal of a ring
embedAsIdeal(...,IsGraded=>...)
-- embed a module as an ideal of a ring
embedAsIdeal(...,MTries=>...)
-- embed a module as an ideal of a ring
embedAsIdeal(...,ReturnMap=>...)
-- embed a module as an ideal of a ring
embedAsIdeal(...,Section=>...)
-- embed a module as an ideal of a ring
embedAsIdeal(Matrix)
-- embed a module as an ideal of a ring
embedAsIdeal(Module)
-- embed a module as an ideal of a ring
embedAsIdeal(Ring,Matrix)
-- embed a module as an ideal of a ring
embedAsIdeal(Ring,Module)
-- embed a module as an ideal of a ring
findElementOfDegree
-- find an element of a specified degree
findElementOfDegree(BasicList,Ring)
-- find an element of a specified degree
findElementOfDegree(ZZ,Ring)
-- find an element of a specified degree
floor(RWeilDivisor)
-- produce a WeilDivisor whose coefficients are ceilings or floors of the divisor
gbs
-- get the list of Groebner bases corresponding to the height-one primes in the support of a divisor
gbs(BasicDivisor)
-- get the list of Groebner bases corresponding to the height-one primes in the support of a divisor
getLinearDiophantineSolution
-- find a solution of the linear Diophantine equation Ax = b
getLinearDiophantineSolution(...,Safe=>...)
-- find a solution of the linear Diophantine equation Ax = b
getLinearDiophantineSolution(BasicList,BasicList)
-- find a solution of the linear Diophantine equation Ax = b
getLinearDiophantineSolution(BasicList,Matrix)
-- find a solution of the linear Diophantine equation Ax = b
getPrimeCount
-- get the number of height-one primes in the support of the divisor
getPrimeCount(BasicDivisor)
-- get the number of height-one primes in the support of the divisor
getPrimeDivisors
-- get the list of prime divisors of a given divisor
getPrimeDivisors(BasicDivisor)
-- get the list of prime divisors of a given divisor
ideal(QWeilDivisor)
-- calculate the corresponding module of a divisor and represent it as an ideal
ideal(RWeilDivisor)
-- calculate the corresponding module of a divisor and represent it as an ideal
ideal(WeilDivisor)
-- calculate the corresponding module of a divisor and represent it as an ideal
idealPower
-- compute the ideal generated by the generators of the ideal raised to a power
idealPower(ZZ,Ideal)
-- compute the ideal generated by the generators of the ideal raised to a power
ideals
-- a symbol used as a key within the divisor cache
IdealStrategy
-- a valid value for the Strategy option in dualize or reflexify
isCartier
-- whether a Weil divisor is Cartier
isCartier(...,IsGraded=>...)
-- whether a Weil divisor is Cartier
isCartier(WeilDivisor)
-- whether a Weil divisor is Cartier
isDomain
-- whether a ring is a domain
isDomain(Ring)
-- whether a ring is a domain
isEffective
-- whether a divisor is effective
isEffective(BasicDivisor)
-- whether a divisor is effective
IsGraded
-- an option used by numerous functions which tells it to treat the divisors as if we were working on the Proj of the ambient ring.
isHomogeneous(BasicDivisor)
-- whether the divisor is graded (homogeneous)
isLinearEquivalent
-- whether two Weil divisors are linearly equivalent
isLinearEquivalent(...,IsGraded=>...)
-- whether two Weil divisors are linearly equivalent
isLinearEquivalent(WeilDivisor,WeilDivisor)
-- whether two Weil divisors are linearly equivalent
isPrime(BasicDivisor)
-- whether a divisor is prime
isPrincipal
-- whether a Weil divisor is globally principal
isPrincipal(...,IsGraded=>...)
-- whether a Weil divisor is globally principal
isPrincipal(WeilDivisor)
-- whether a Weil divisor is globally principal
isQCartier
-- whether m times a divisor is Cartier for any m from 1 to a fixed positive integer n1.
isQCartier(...,IsGraded=>...)
-- whether m times a divisor is Cartier for any m from 1 to a fixed positive integer n1.
isQCartier(ZZ,QWeilDivisor)
-- whether m times a divisor is Cartier for any m from 1 to a fixed positive integer n1.
isQCartier(ZZ,WeilDivisor)
-- whether m times a divisor is Cartier for any m from 1 to a fixed positive integer n1.
isQLinearEquivalent
-- whether two Q-divisors are linearly equivalent
isQLinearEquivalent(...,IsGraded=>...)
-- whether two Q-divisors are linearly equivalent
isQLinearEquivalent(ZZ,QWeilDivisor,QWeilDivisor)
-- whether two Q-divisors are linearly equivalent
isReduced
-- whether a divisor is reduced
isReduced(BasicDivisor)
-- whether a divisor is reduced
isReflexive(Ideal)
-- whether an ideal or module is reflexive
isReflexive(Ideal,KnownDomain=>...)
-- whether an ideal or module is reflexive
isReflexive(Ideal,Strategy=>...)
-- whether an ideal or module is reflexive
isReflexive(Module)
-- whether an ideal or module is reflexive
isReflexive(Module,KnownDomain=>...)
-- whether an ideal or module is reflexive
isReflexive(Module,Strategy=>...)
-- whether an ideal or module is reflexive
isSmooth(Ideal)
-- whether R mod the ideal is smooth
isSmooth(Ideal,IsGraded=>...)
-- whether R mod the ideal is smooth
isSNC
-- whether the divisor is simple normal crossings
isSNC(...,IsGraded=>...)
-- whether the divisor is simple normal crossings
isSNC(BasicDivisor)
-- whether the divisor is simple normal crossings
isVeryAmple(WeilDivisor)
-- whether a divisor is very ample.
isVeryAmple(WeilDivisor,Verbose=>...)
-- whether a divisor is very ample.
isWeilDivisor
-- whether a rational/real divisor is in actuality a Weil divisor
isWeilDivisor(RWeilDivisor)
-- whether a rational/real divisor is in actuality a Weil divisor
isWellDefined(BasicDivisor)
-- whether a divisor is valid
isZeroDivisor
-- whether the divisor is the zero divisor
isZeroDivisor(BasicDivisor)
-- whether the divisor is the zero divisor
KnownCartier
-- an option used to specify to certain functions that we know that the divisor is Cartier
KnownDomain
-- an option used to specify to certain functions that we know that the ring is a domain
mapToProjectiveSpace
-- compute the map to projective space associated with the global sections of a Cartier divisor
mapToProjectiveSpace(...,KnownCartier=>...)
-- compute the map to projective space associated with the global sections of a Cartier divisor
mapToProjectiveSpace(...,Variable=>...)
-- compute the map to projective space associated with the global sections of a Cartier divisor
mapToProjectiveSpace(WeilDivisor)
-- compute the map to projective space associated with the global sections of a Cartier divisor
ModuleStrategy
-- a valid value for the Strategy option in dualize or reflexify
MTries
-- an option used by embedAsIdeal how many times to try embedding the module as an ideal in a random way.
negativePart
-- get the effective part or anti-effective part of a divisor
negativePart(RWeilDivisor)
-- get the effective part or anti-effective part of a divisor
nonCartierLocus
-- the non-Cartier locus of a Weil divisor
nonCartierLocus(...,IsGraded=>...)
-- the non-Cartier locus of a Weil divisor
nonCartierLocus(WeilDivisor)
-- the non-Cartier locus of a Weil divisor
NoStrategy
-- a valid value for the Strategy option in dualize or reflexify
Number * BasicDivisor
-- multiply a divisor by a number
OO RWeilDivisor
-- calculate module corresponding to divisor
positivePart
-- get the effective part or anti-effective part of a divisor
positivePart(RWeilDivisor)
-- get the effective part or anti-effective part of a divisor
Primes
-- a value for the option Strategy for the pullback method
primes
-- get the list of height-one primes in the support of a divisor
primes(BasicDivisor)
-- get the list of height-one primes in the support of a divisor
pullback(RingMap,RWeilDivisor)
-- pullback a divisor under a ring map
pullback(RingMap,RWeilDivisor,Strategy=>...)
-- pullback a divisor under a ring map
QQ * RWeilDivisor
-- multiply a divisor by a number
QQ * WeilDivisor
-- multiply a divisor by a number
QWeilDivisor
-- the Types of divisors
ramificationDivisor
-- compute the ramification divisor of a finite inclusion of normal domains or a blowup over a smooth base
ramificationDivisor(...,IsGraded=>...)
-- compute the ramification divisor of a finite inclusion of normal domains or a blowup over a smooth base
ramificationDivisor(RingMap)
-- compute the ramification divisor of a finite inclusion of normal domains or a blowup over a smooth base
reflexify
-- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
reflexify(...,KnownDomain=>...)
-- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
reflexify(...,ReturnMap=>...)
-- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
reflexify(...,Strategy=>...)
-- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
reflexify(Ideal)
-- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
reflexify(Module)
-- calculate the double dual of an ideal or module Hom(Hom(M, R), R)
reflexivePower
-- computes a reflexive power of an ideal in a normal domain
reflexivePower(...,Strategy=>...)
-- computes a reflexive power of an ideal in a normal domain
reflexivePower(ZZ,Ideal)
-- computes a reflexive power of an ideal in a normal domain
ReturnMap
-- an option for embedAsIdeal
ring(BasicDivisor)
-- get the ambient ring of a divisor
RR * QWeilDivisor
-- multiply a divisor by a number
RR * RWeilDivisor
-- multiply a divisor by a number
RWeilDivisor
-- the Types of divisors
RWeilDivisor == RWeilDivisor
-- whether two divisors are equal
Safe
-- an option used to tell functions whether not to do checks.
Section
-- an option used in a number of functions
Sheaves
-- a value for the option Strategy for the pullback method
toQWeilDivisor
-- create a Q-Weil divisor from a Weil divisor
toQWeilDivisor(QWeilDivisor)
-- create a Q-Weil divisor from a Weil divisor
toQWeilDivisor(WeilDivisor)
-- create a Q-Weil divisor from a Weil divisor
torsionSubmodule
-- create the torsion submodule of a module
torsionSubmodule(...,KnownDomain=>...)
-- create the torsion submodule of a module
torsionSubmodule(...,Strategy=>...)
-- create the torsion submodule of a module
torsionSubmodule(Module)
-- create the torsion submodule of a module
toRWeilDivisor
-- create a R-divisor from a Q or Weil divisor
toRWeilDivisor(QWeilDivisor)
-- create a R-divisor from a Q or Weil divisor
toRWeilDivisor(RWeilDivisor)
-- create a R-divisor from a Q or Weil divisor
toRWeilDivisor(WeilDivisor)
-- create a R-divisor from a Q or Weil divisor
toWeilDivisor
-- create a Weil divisor from a Q or R-divisor
toWeilDivisor(RWeilDivisor)
-- create a Weil divisor from a Q or R-divisor
trim(BasicDivisor)
-- trims the ideals displayed to the user and removes primes with coefficient zero
WeilDivisor
-- the Types of divisors
zeroDivisor
-- constructs the zero Weil divisor for the ring
zeroDivisor(Ring)
-- constructs the zero Weil divisor for the ring