i1 : R = QQ[x,y];
|
i2 : D = divisor(x^2*y/(x+y));
o2 : WeilDivisor on R
|
i3 : E = divisor({1/2, -5/3}, {ideal(x), ideal(y)}, CoefficientType=>QQ)
o3 = 1/2*Div(x) + -5/3*Div(y)
o3 : QWeilDivisor on R
|
i4 : F = divisor({1.5, 0, -3.2}, {ideal(x), ideal(y), ideal(x^2-y^3)}, CoefficientType=>RR)
o4 = 1.5*Div(x) + 0*Div(y) + -3.2*Div(-y^3+x^2)
o4 : RWeilDivisor on R
|
i5 : 8*D
o5 = 8*Div(y) + 16*Div(x) + -8*Div(x+y)
o5 : WeilDivisor on R
|
i6 : (-2/3)*D
o6 = -2/3*Div(y) + -4/3*Div(x) + 2/3*Div(x+y)
o6 : QWeilDivisor on R
|
i7 : 0.0*D
o7 = 0, the zero divisor
o7 : RWeilDivisor on R
|
i8 : (3/2)*E
o8 = 3/4*Div(x) + -5/2*Div(y)
o8 : QWeilDivisor on R
|
i9 : (-1.414)*E
o9 = 2.35667*Div(y) + -.707*Div(x)
o9 : RWeilDivisor on R
|
i10 : 6*F
o10 = 9*Div(x) + -19.2*Div(-y^3+x^2)
o10 : RWeilDivisor on R
|
i11 : (-3/2)*F
o11 = -2.25*Div(x) + 4.8*Div(-y^3+x^2)
o11 : RWeilDivisor on R
|