The composition of maps $d*g$ is a derivation $N\ \to\ L$, with the composition $f*g$ defining the module structure of $L$ over $N$, where $f: M\ \to\ L$ defines the module structure of $L$ over $M$.
i1 : L = lieAlgebra{a,b}
o1 = L
o1 : LieAlgebra
|
i2 : M = lieAlgebra{a,b,c}
o2 = M
o2 : LieAlgebra
|
i3 : N = lieAlgebra{a1,b1}
o3 = N
o3 : LieAlgebra
|
i4 : f = map(L,M)
o4 = f
o4 : LieAlgebraMap
|
i5 : use M
|
i6 : g = map(M,N,{b,a})
o6 = g
o6 : LieAlgebraMap
|
i7 : use L
|
i8 : d = lieDerivation(f,{a a b,b b a,a a b+b b a})
o8 = d
o8 : LieDerivation
|
i9 : describe d
o9 = a => - (a b a)
b => (b b a)
c => - (a b a) + (b b a)
map => f
sign => 0
weight => {2, 0}
source => M
target => L
|
i10 : describe(f*g)
o10 = a1 => b
b1 => a
source => N
target => L
|
i11 : describe(d*g)
o11 = a1 => (b b a)
b1 => - (a b a)
map => homomorphism from N to L
sign => 0
weight => {2, 0}
source => N
target => L
|