It is checked that the derivation $(d,f): M \ \to\ L$ maps the ideal of relations in $M$ to 0 up to degree $n$. More precisely, if $M=F/I$ where $F$ is free, and $p$ is the projection $F$ \ \to\ $M$, then the derivation $(d*p,f*p): F \ \to\ L$ maps $I$ to 0 in degrees $\le\ n$. If $n$ is big enough and $I$ is a list, then it is possible to get the information "the derivation is well defined for all degrees".
i1 : F=lieAlgebra{a,b}
o1 = F
o1 : LieAlgebra
|
i2 : L=F/{a a a b,b b b a}
o2 = L
o2 : LieAlgebra
|
i3 : e=euler L
o3 = e
o3 : LieDerivation
|
i4 : isWellDefined(4,e)
the derivation is well defined for all degrees
o4 = true
|
i5 : d4=lieDerivation{0_L,a b a b a}
warning: the derivation might not be well defined, use isWellDefined
o5 = d4
o5 : LieDerivation
|
i6 : isWellDefined(4,d4)
o6 = false
|
i7 : d5=lieDerivation{0_L,b a b a b a}
warning: the derivation might not be well defined, use isWellDefined
o7 = d5
o7 : LieDerivation
|
i8 : isWellDefined(4,d5)
the derivation is well defined for all degrees
o8 = true
|
i9 : di=innerDerivation(a b a b a)
o9 = d5
o9 : LieDerivation
|
i10 : isWellDefined(4,di)
the derivation is well defined for all degrees
o10 = true
|
i11 : di===d5
o11 = true
|