next | previous | forward | backward | up | index | toc

# scoreEquations(...,SaturateOptions=>...) -- use options from "saturate"

## Synopsis

• Usage:
scoreEquations(R,U,SaturateOptions=>L)
• Inputs:
• L, a list, of options to set up saturation. Accepts any option from the function saturate

## Description

Default SaturateOptions in scoreEquations are the default options in saturate. All optional input in saturate is allowed.

 i1 : G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph {{3,4}}) o1 = MixedGraph{Bigraph => Bigraph{3 => {4}} } 4 => {3} Digraph => Digraph{1 => {2, 3}} 2 => {3} 3 => {4} 4 => {} Graph => Graph{} o1 : MixedGraph i2 : R=gaussianRing(G) o2 = R o2 : PolynomialRing i3 : U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}}; 4 4 o3 : Matrix QQ <-- QQ i4 : J=scoreEquations(R,U,SaturateOptions => {DegreeLimit=>1, MinimalGenerators => false}) o4 = ideal (192199680p - 99333449, 267221621760p - 849243924773, 3,4 4,4 ------------------------------------------------------------------------ 1353974896462794079472640p - 142165262245288892244817, 6898968p - 3,3 2,2 ------------------------------------------------------------------------ 11533057, 19600p - 95819, 20855l + 90447, 1,1 3,4 ------------------------------------------------------------------------ 146915678869660815915l - 4228634793402814499, 2,3 ------------------------------------------------------------------------ 58766271547864326366l + 4167005135395196717, 574914l - 896035) 1,3 1,2 o4 : Ideal of QQ[l ..l , l , l , p , p , p , p , p ] 1,2 1,3 2,3 3,4 1,1 2,2 3,3 4,4 3,4

## Further information

• Default value: new OptionTable from {Strategy => null, BasisElementLimit => infinity, DegreeLimit => {}, MinimalGenerators => true, PairLimit => infinity}
• Function: scoreEquations -- score equations of the log-likelihood function of a Gaussian graphical model
• Option key: SaturateOptions -- optional input to use options "saturate"