i1 : R = ZZ/32003[a,b,c,d];
|
i2 : M = ideal (a^2, a*b, b^2)
2 2
o2 = ideal (a , a*b, b )
o2 : Ideal of R
|
i3 : F = groebnerFamily M
2 2 2
o3 = ideal (a + t a*c + t b*c + t a*d + t b*d + t c + t c*d + t d , a*b +
1 2 4 5 3 6 7
------------------------------------------------------------------------
2 2 2
t a*c + t b*c + t a*d + t b*d + t c + t c*d + t d , b + t a*c +
8 9 11 12 10 13 14 15
------------------------------------------------------------------------
2 2
t b*c + t a*d + t b*d + t c + t c*d + t d )
16 18 19 17 20 21
ZZ
o3 : Ideal of -----[t , t ..t , t , t ..t , t , t ..t , t ..t , t ..t , t ..t , t ..t , t ..t , t ..t ][a..d]
32003 3 6 7 10 13 14 17 20 21 1 2 4 5 8 9 11 12 15 16 18 19
|
i4 : netList F_*
+---------------------------------------------------------------+
| 2 2 2 |
o4 = |a + t a*c + t b*c + t a*d + t b*d + t c + t c*d + t d |
| 1 2 4 5 3 6 7 |
+---------------------------------------------------------------+
| 2 2 |
|a*b + t a*c + t b*c + t a*d + t b*d + t c + t c*d + t d |
| 8 9 11 12 10 13 14 |
+---------------------------------------------------------------+
| 2 2 2|
|b + t a*c + t b*c + t a*d + t b*d + t c + t c*d + t d |
| 15 16 18 19 17 20 21 |
+---------------------------------------------------------------+
|
i5 : U = ring F
o5 = U
o5 : PolynomialRing
|
i6 : T = coefficientRing U
o6 = T
o6 : PolynomialRing
|
i7 : gens T
o7 = {t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ,
3 6 7 10 13 14 17 20 21 1 2 4 5 8 9 11
------------------------------------------------------------------------
t , t , t , t , t }
12 15 16 18 19
o7 : List
|
i8 : gens U
o8 = {a, b, c, d}
o8 : List
|
Here, $F$ is the family of homogeneous ideals having $M$ as their initial ideal, under the term order of the ring of $M$.
The optional argument AllStandard is boolean, taking the value $true$ to compute the family of all homogeneous ideals with a given initial ideal and the value $false$ to compute the family with respect to a given order. The default value for this argument is false.
If $L$ is not given, then it is computed using standardMonomials (if AllStandard is true), or smallerMonomials (if AllStandard is false).
i9 : L = standardMonomials M
2 2 2 2
o9 = {{a*c, b*c, c , a*d, b*d, c*d, d }, {a*c, b*c, c , a*d, b*d, c*d, d },
------------------------------------------------------------------------
2 2
{a*c, b*c, c , a*d, b*d, c*d, d }}
o9 : List
|
i10 : F2 = groebnerFamily (M, L)
2 2 2
o10 = ideal (a + t a*c + t b*c + t a*d + t b*d + t c + t c*d + t d , a*b +
1 2 4 5 3 6 7
-----------------------------------------------------------------------
2 2 2
t a*c + t b*c + t a*d + t b*d + t c + t c*d + t d , b + t a*c +
8 9 11 12 10 13 14 15
-----------------------------------------------------------------------
2 2
t b*c + t a*d + t b*d + t c + t c*d + t d )
16 18 19 17 20 21
ZZ
o10 : Ideal of -----[t , t ..t , t , t ..t , t , t ..t , t ..t , t ..t , t ..t , t ..t , t ..t , t ..t ][a..d]
32003 3 6 7 10 13 14 17 20 21 1 2 4 5 8 9 11 12 15 16 18 19
|
i11 : kk = ZZ/101
o11 = kk
o11 : QuotientRing
|
i12 : E = kk[a,b,c,d,e,SkewCommutative => true]
o12 = E
o12 : PolynomialRing, 5 skew commutative variable(s)
|
i13 : I = ideal(a*d,a*c,a*b,b*d*e,b*c*e,b*c*d)
o13 = ideal (a*d, a*c, a*b, b*d*e, b*c*e, b*c*d)
o13 : Ideal of E
|
i14 : F1 = groebnerFamily I
o14 = ideal (a*d + t b*d + t a*e + t c*d + t b*e + t c*e + t d*e, a*c + t b*c
1 3 2 4 5 6 7
-----------------------------------------------------------------------
+ t b*d + t a*e + t c*d + t b*e + t c*e + t d*e, a*b + t b*c +
8 10 9 11 12 13 14
-----------------------------------------------------------------------
t b*d + t a*e + t c*d + t b*e + t c*e + t d*e, b*d*e + t c*d*e,
15 17 16 18 19 20 21
-----------------------------------------------------------------------
b*c*e + t c*d*e, b*c*d + t c*d*e)
22 23
o14 : Ideal of kk[t ..t , t ..t , t ..t , t , t , t , t , t , t , t ..t , t , t , t , t , t ..t , t , t ..t ][a..e]
19 20 5 6 12 13 16 18 2 4 9 11 14 15 17 23 1 3 7 8 10 21 22
|
i15 : netList F1_*
+------------------------------------------------------------------+
o15 = |a*d + t b*d + t a*e + t c*d + t b*e + t c*e + t d*e |
| 1 3 2 4 5 6 |
+------------------------------------------------------------------+
|a*c + t b*c + t b*d + t a*e + t c*d + t b*e + t c*e + t d*e |
| 7 8 10 9 11 12 13 |
+------------------------------------------------------------------+
|a*b + t b*c + t b*d + t a*e + t c*d + t b*e + t c*e + t d*e|
| 14 15 17 16 18 19 20 |
+------------------------------------------------------------------+
|b*d*e + t c*d*e |
| 21 |
+------------------------------------------------------------------+
|b*c*e + t c*d*e |
| 22 |
+------------------------------------------------------------------+
|b*c*d + t c*d*e |
| 23 |
+------------------------------------------------------------------+
|
i16 : F2 = groebnerFamily(I, AllStandard => true)
o16 = ideal (a*d + t a*e + t b*c + t b*d + t c*d + t b*e + t c*e + t d*e, a*c
4 1 2 3 5 6 7
-----------------------------------------------------------------------
+ t a*e + t b*c + t b*d + t c*d + t b*e + t c*e + t d*e, a*b +
11 8 9 10 12 13 14
-----------------------------------------------------------------------
t a*e + t b*c + t b*d + t c*d + t b*e + t c*e + t d*e, b*d*e +
18 15 16 17 19 20 21
-----------------------------------------------------------------------
t c*d*e, b*c*e + t c*d*e, b*c*d + t c*d*e)
22 23 24
o16 : Ideal of kk[t ..t , t ..t , t ..t , t , t , t , t , t , t , t ..t , t , t , t ..t , t ..t , t , t , t ..t ][a..e]
20 21 6 7 13 14 17 19 3 5 10 12 15 16 18 24 1 2 8 9 4 11 22 23
|
i17 : netList F2_*
+------------------------------------------------------------------+
o17 = |a*d + t a*e + t b*c + t b*d + t c*d + t b*e + t c*e + t d*e |
| 4 1 2 3 5 6 7 |
+------------------------------------------------------------------+
|a*c + t a*e + t b*c + t b*d + t c*d + t b*e + t c*e + t d*e |
| 11 8 9 10 12 13 14 |
+------------------------------------------------------------------+
|a*b + t a*e + t b*c + t b*d + t c*d + t b*e + t c*e + t d*e|
| 18 15 16 17 19 20 21 |
+------------------------------------------------------------------+
|b*d*e + t c*d*e |
| 22 |
+------------------------------------------------------------------+
|b*c*e + t c*d*e |
| 23 |
+------------------------------------------------------------------+
|b*c*d + t c*d*e |
| 24 |
+------------------------------------------------------------------+
|
i18 : J2 = trim groebnerStratum F2
o18 = ideal (t + t t + t t - t t t + t t - t t t , t - t +
14 24 9 10 11 9 11 22 12 23 8 11 23 7 13
-----------------------------------------------------------------------
t t - t t + t t + t t + t t - t t t - t t t + t t -
24 2 24 8 10 4 3 11 12 22 9 4 22 2 11 22 5 23
-----------------------------------------------------------------------
t t t - t t t , t + t t - t t - t t + t t t + t t t , t
8 4 23 1 11 23 6 24 1 3 4 5 22 2 4 22 1 4 23 21
-----------------------------------------------------------------------
+ t t - t t + t t + t t - t t t + t t t + t t t -
10 18 10 24 16 24 17 11 18 9 22 24 9 22 10 11 22
-----------------------------------------------------------------------
2
t t t - t t t - t t + t t - t t t - t t t +
16 11 22 9 11 22 13 23 19 23 18 8 23 15 11 23
-----------------------------------------------------------------------
t t t - t t t t , t - t t + t t + t t - t t + t t
12 22 23 8 11 22 23 20 3 18 3 24 15 24 17 4 13 22
-----------------------------------------------------------------------
- t t + t t t - t t t + t t t - t t t + t t t -
19 22 18 2 22 24 2 22 24 8 22 10 4 22 16 4 22
-----------------------------------------------------------------------
2 2 2
t t t - t t + t t t + t t t + t t t - t t t + t t t
3 11 22 12 22 9 4 22 2 11 22 18 1 23 24 1 23 3 4 23
-----------------------------------------------------------------------
2
+ t t t - t t t t + t t t t + t t t t - t t t , t t -
15 4 23 2 4 22 23 8 4 22 23 1 11 22 23 1 4 23 17 18
-----------------------------------------------------------------------
t t + t t t - t t t - t t t + t t t + t t t -
17 24 10 18 22 16 18 22 10 24 22 16 24 22 17 11 22
-----------------------------------------------------------------------
2 2 2 2 3
t t t + t t t + t t t - t t t - t t t - t t t -
18 9 22 24 9 22 10 11 22 16 11 22 9 11 22 3 18 23
-----------------------------------------------------------------------
t t t + t t t + t t t - t t t + t t t t - t t t t
15 18 23 3 24 23 15 24 23 17 4 23 18 2 22 23 24 2 22 23
-----------------------------------------------------------------------
- t t t t + t t t t - t t t t + t t t t - t t t t -
18 8 22 23 24 8 22 23 10 4 22 23 16 4 22 23 3 11 22 23
-----------------------------------------------------------------------
2 2 2 2
t t t t + t t t t + t t t t - t t t t + t t t -
15 11 22 23 9 4 22 23 2 11 22 23 8 11 22 23 18 1 23
-----------------------------------------------------------------------
2 2 2 2 2 2
t t t + t t t + t t t - t t t t + t t t t + t t t t -
24 1 23 3 4 23 15 4 23 2 4 22 23 8 4 22 23 1 11 22 23
-----------------------------------------------------------------------
3
t t t , t t - t t t - t t t + t t t - t t t -
1 4 23 17 12 17 9 4 17 8 11 10 12 22 12 16 22
-----------------------------------------------------------------------
2
t t t t + t t t t - t t t t + t t t t - t t t +
10 9 4 22 16 9 4 22 10 8 11 22 16 8 11 22 12 9 22
-----------------------------------------------------------------------
2 2 2
t t t + t t t t - t t t - t t t + t t t t + t t t t +
9 4 22 8 9 11 22 3 12 23 12 15 23 3 9 4 23 15 9 4 23
-----------------------------------------------------------------------
t t t t + t t t t + t t t t - t t t t - t t t t t +
3 8 11 23 15 8 11 23 12 2 22 23 12 8 22 23 2 9 4 22 23
-----------------------------------------------------------------------
2 2 2
t t t t t - t t t t t + t t t t + t t t - t t t t -
8 9 4 22 23 2 8 11 22 23 8 11 22 23 12 1 23 1 9 4 23
-----------------------------------------------------------------------
2
t t t t , t t - t t t - t t t + t t t - t t t -
1 8 11 23 17 5 17 2 4 17 1 11 5 10 22 5 16 22
-----------------------------------------------------------------------
2
t t t t + t t t t - t t t t + t t t t - t t t +
10 2 4 22 16 2 4 22 10 1 11 22 16 1 11 22 5 9 22
-----------------------------------------------------------------------
2 2
t t t t + t t t t - t t t - t t t + t t t t + t t t t +
2 9 4 22 1 9 11 22 3 5 23 5 15 23 3 2 4 23 15 2 4 23
-----------------------------------------------------------------------
2
t t t t + t t t t + t t t t - t t t t - t t t t +
3 1 11 23 15 1 11 23 5 2 22 23 5 8 22 23 2 4 22 23
-----------------------------------------------------------------------
2 2
t t t t t - t t t t t + t t t t t + t t t - t t t t -
2 8 4 22 23 1 2 11 22 23 1 8 11 22 23 5 1 23 1 2 4 23
-----------------------------------------------------------------------
2 2
t t t , t t - t t + t t t - t t t + t t t + t t t
1 11 23 13 17 17 19 17 24 8 17 10 4 17 16 4 17 15 11
-----------------------------------------------------------------------
+ t t t - t t t - t t t + t t t + t t t t -
13 10 22 19 10 22 13 16 22 19 16 22 10 24 8 22
-----------------------------------------------------------------------
2 2
t t t t - t t t + 2t t t t - t t t + t t t t -
16 24 8 22 10 4 22 10 16 4 22 16 4 22 10 15 11 22
-----------------------------------------------------------------------
2 2 2
t t t t - t t t t - t t t + t t t - t t t t +
15 16 11 22 17 8 11 22 13 9 22 19 9 22 24 8 9 22
-----------------------------------------------------------------------
2 2 2 2 2
t t t t - t t t t - t t t t + t t t t - t t t t +
10 9 4 22 16 9 4 22 10 8 11 22 16 8 11 22 15 9 11 22
-----------------------------------------------------------------------
3
t t t t - t t t + t t t - t t t + t t t - t t t t -
8 9 11 22 13 3 23 19 3 23 13 15 23 19 15 23 3 24 8 23
-----------------------------------------------------------------------
t t t t + t t t t + t t t t - t t t t - t t t t +
15 24 8 23 3 10 4 23 10 15 4 23 3 16 4 23 15 16 4 23
-----------------------------------------------------------------------
2
t t t t - t t t t - t t t + t t t t - t t t t -
17 8 4 23 3 15 11 23 15 11 23 13 2 22 23 19 2 22 23
-----------------------------------------------------------------------
2
t t t t + t t t t + t t t t t - t t t t - t t t t t
13 8 22 23 19 8 22 23 24 2 8 22 23 24 8 22 23 10 2 4 22 23
-----------------------------------------------------------------------
+ t t t t t + 2t t t t t - 2t t t t t + t t t t t +
16 2 4 22 23 10 8 4 22 23 16 8 4 22 23 15 2 11 22 23
-----------------------------------------------------------------------
2 2 2 2 2
t t t t t - t t t t t - t t t t t + t t t t + t t t -
3 8 11 22 23 8 9 4 22 23 2 8 11 22 23 8 11 22 23 13 1 23
-----------------------------------------------------------------------
2 2 2 2 2
t t t + t t t t - t t t t + t t t t - t t t t -
19 1 23 24 1 8 23 10 1 4 23 16 1 4 23 3 8 4 23
-----------------------------------------------------------------------
2 2 2 2 2 2
t t t t + t t t t + t t t t t - t t t t - t t t t t +
15 8 4 23 15 1 11 23 2 8 4 22 23 8 4 22 23 1 8 11 22 23
-----------------------------------------------------------------------
3
t t t t )
1 8 4 23
o18 : Ideal of kk[t ..t , t ..t , t ..t , t , t , t , t , t , t , t ..t , t , t , t ..t , t ..t , t , t , t ..t ]
20 21 6 7 13 14 17 19 3 5 10 12 15 16 18 24 1 2 8 9 4 11 22 23
|
i19 : C2 = decompose J2
2
o19 = {ideal (t + t t - t t - t t - t t - t t + t t t -
17 10 22 16 22 9 22 3 23 15 23 2 22 23
-----------------------------------------------------------------------
2
t t t + t t , t + t t + t t - t t t + t t - t t t ,
8 22 23 1 23 14 24 9 10 11 9 11 22 12 23 8 11 23
-----------------------------------------------------------------------
t - t + t t - t t + t t + t t + t t - t t t - t t t
7 13 24 2 24 8 10 4 3 11 12 22 9 4 22 2 11 22
-----------------------------------------------------------------------
+ t t - t t t - t t t , t + t t - t t - t t + t t t +
5 23 8 4 23 1 11 23 6 24 1 3 4 5 22 2 4 22
-----------------------------------------------------------------------
t t t , t + t t - t t + t t - t t t + t t t - t t
1 4 23 21 10 18 10 24 16 24 18 9 22 24 9 22 13 23
-----------------------------------------------------------------------
2
+ t t - t t t + t t t + t t t - t t t t - t t t ,
19 23 18 8 23 3 11 23 12 22 23 2 11 22 23 1 11 23
-----------------------------------------------------------------------
t - t t + t t + t t + t t - t t + t t t - t t t +
20 3 18 3 24 15 24 13 22 19 22 18 2 22 24 2 22
-----------------------------------------------------------------------
2 2
t t t - t t t - t t + t t t + t t t - t t t +
24 8 22 3 11 22 12 22 2 11 22 18 1 23 24 1 23
-----------------------------------------------------------------------
t t t t ), ideal (t - t + t t - t t , t - t t - t t , t
1 11 22 23 18 24 11 22 4 23 12 9 4 8 11 5
-----------------------------------------------------------------------
- t t - t t , t + t t + t t - t t t + t t t , t - t +
2 4 1 11 14 24 9 10 11 9 11 22 9 4 23 13 19
-----------------------------------------------------------------------
t t - t t + t t + t t - t t t + t t t , t - t + t t +
24 8 10 4 16 4 15 11 8 11 22 8 4 23 7 19 24 2
-----------------------------------------------------------------------
t t + t t + t t - t t t + t t t , t + t t - t t -
16 4 3 11 15 11 2 11 22 2 4 23 6 24 1 3 4
-----------------------------------------------------------------------
t t t + t t t , t + t t + t t - t t t + t t t , t +
1 11 22 1 4 23 21 16 24 17 11 16 11 22 16 4 23 20
-----------------------------------------------------------------------
t t - t t - t t t + t t t )}
15 24 17 4 15 11 22 15 4 23
o19 : List
|
i20 : netList C2_0_*
+--------------------------------------------------------------------------------------------------------------------------------------------------+
| 2 2 |
o20 = |t + t t - t t - t t - t t - t t + t t t - t t t + t t |
| 17 10 22 16 22 9 22 3 23 15 23 2 22 23 8 22 23 1 23 |
+--------------------------------------------------------------------------------------------------------------------------------------------------+
|t + t t + t t - t t t + t t - t t t |
| 14 24 9 10 11 9 11 22 12 23 8 11 23 |
+--------------------------------------------------------------------------------------------------------------------------------------------------+
|t - t + t t - t t + t t + t t + t t - t t t - t t t + t t - t t t - t t t |
| 7 13 24 2 24 8 10 4 3 11 12 22 9 4 22 2 11 22 5 23 8 4 23 1 11 23 |
+--------------------------------------------------------------------------------------------------------------------------------------------------+
|t + t t - t t - t t + t t t + t t t |
| 6 24 1 3 4 5 22 2 4 22 1 4 23 |
+--------------------------------------------------------------------------------------------------------------------------------------------------+
| 2 |
|t + t t - t t + t t - t t t + t t t - t t + t t - t t t + t t t + t t t - t t t t - t t t |
| 21 10 18 10 24 16 24 18 9 22 24 9 22 13 23 19 23 18 8 23 3 11 23 12 22 23 2 11 22 23 1 11 23 |
+--------------------------------------------------------------------------------------------------------------------------------------------------+
| 2 2 |
|t - t t + t t + t t + t t - t t + t t t - t t t + t t t - t t t - t t + t t t + t t t - t t t + t t t t |
| 20 3 18 3 24 15 24 13 22 19 22 18 2 22 24 2 22 24 8 22 3 11 22 12 22 2 11 22 18 1 23 24 1 23 1 11 22 23|
+--------------------------------------------------------------------------------------------------------------------------------------------------+
|
i21 : netList C2_1_*
+---------------------------------------------------------------+
o21 = |t - t + t t - t t |
| 18 24 11 22 4 23 |
+---------------------------------------------------------------+
|t - t t - t t |
| 12 9 4 8 11 |
+---------------------------------------------------------------+
|t - t t - t t |
| 5 2 4 1 11 |
+---------------------------------------------------------------+
|t + t t + t t - t t t + t t t |
| 14 24 9 10 11 9 11 22 9 4 23 |
+---------------------------------------------------------------+
|t - t + t t - t t + t t + t t - t t t + t t t |
| 13 19 24 8 10 4 16 4 15 11 8 11 22 8 4 23|
+---------------------------------------------------------------+
|t - t + t t + t t + t t + t t - t t t + t t t |
| 7 19 24 2 16 4 3 11 15 11 2 11 22 2 4 23 |
+---------------------------------------------------------------+
|t + t t - t t - t t t + t t t |
| 6 24 1 3 4 1 11 22 1 4 23 |
+---------------------------------------------------------------+
|t + t t + t t - t t t + t t t |
| 21 16 24 17 11 16 11 22 16 4 23 |
+---------------------------------------------------------------+
|t + t t - t t - t t t + t t t |
| 20 15 24 17 4 15 11 22 15 4 23 |
+---------------------------------------------------------------+
|