next | previous | forward | backward | up | index | toc

# integralClosure(...,Variable=>...) -- set the base letter for the indexed variables introduced while computing the integral closure

## Synopsis

• Usage:
integralClosure(R, Variable=>x)
• Inputs:
• x, ,
• Consequences:
• The new variables will be subscripted using x.

## Description

 i1 : R = QQ[x,y,z]/ideal(x^6-z^6-y^2*z^4-z^3); i2 : R' = integralClosure(R, Variable => symbol t) o2 = R' o2 : QuotientRing i3 : trim ideal R' 2 3 2 3 o3 = ideal (t z - x , t - y z - z - 1) 3,0 3,0 o3 : Ideal of QQ[t , x..z] 3,0

The algorithm works in stages, each time adding new fractions to the ring. A variable t_(3,0) represents the first (zero-th) variables added at stage 3.

## Further information

• Default value: w
• Function: integralClosure -- integral closure of an ideal or a domain
• Option key: Variable -- specify a name for a variable

## Caveat

The base name should be a symbol The variables added may be changed to t_1, t_2, ... in the future.