.
Use this function to get the ring where the equivariant Hilbert series of the diagonal group action lives in.
The following example defines an action of the product of a two-dimensional torus and two cyclic group of order 3 on a polynomial ring in four variables.
i1 : R = QQ[x_1..x_4]
o1 = R
o1 : PolynomialRing
|
i2 : W = matrix{{0,1,-1,1},{1,0,-1,-1}}
o2 = | 0 1 -1 1 |
| 1 0 -1 -1 |
2 4
o2 : Matrix ZZ <-- ZZ
|
i3 : W1 = matrix{{1,0,1,0},{0,1,1,0}}
o3 = | 1 0 1 0 |
| 0 1 1 0 |
2 4
o3 : Matrix ZZ <-- ZZ
|
i4 : T = diagonalAction(W,W1,{3,3},R)
* 2
o4 = R <- (QQ ) x ZZ/3 x ZZ/3 via
(| 0 1 -1 1 |, | 1 0 1 0 |)
| 1 0 -1 -1 | | 0 1 1 0 |
o4 : DiagonalAction
|
i5 : degreesRing T
o5 = ZZ[z ..z ][T]
0 3
o5 : PolynomialRing
|