Macaulay2
»
Documentation
Packages
»
InvariantRing
::
Table of Contents
next | previous | forward | backward | up |
index
|
toc
InvariantRing : Table of Contents
InvariantRing
-- invariants of group actions
action
-- the group action that produced a ring of invariants
actionMatrix
-- matrix of a linearly reductive action
ambient(RingOfInvariants)
-- the ambient polynomial ring where the group acted upon
cyclicFactors
-- of a diagonal action
definingIdeal
-- presentation of a ring of invariants as polynomial ring modulo the defining ideal
degreesRing(DiagonalAction)
-- of a diagonal action
DiagonalAction
-- the class of all diagonal actions
diagonalAction
-- diagonal group action via weights
dim(GroupAction)
-- dimension of the polynomial ring being acted upon
equivariantHilbert
-- stores equivariant Hilbert series expansions
equivariantHilbertSeries
-- equivariant Hilbert series for a diagonal action
finiteAction
-- the group action generated by a list of matrices
FiniteGroupAction
-- the class of all finite group actions
generators(FiniteGroupAction)
-- generators of a finite group
generators(RingOfInvariants)
-- the generators for a ring of invariants
group
-- list all elements of the group of a finite group action
GroupAction
-- the class of all group actions
groupIdeal
-- ideal defining a linearly reductive group
hilbertIdeal
-- compute generators for the Hilbert ideal
hilbertSeries(RingOfInvariants)
-- Hilbert series of the invariant ring
hironakaDecomposition
-- calculates a Hironaka decomposition for the invariant ring of a finite group
hsop algorithms
-- an overview of the algorithms used in primaryInvariants
invariantRing
-- the ring of invariants of a group action
invariants
-- computes the generating invariants of a group action
invariants(...,DegreeBound=>...)
-- degree bound for invariants of finite groups
invariants(...,DegreeLimit=>...)
-- GB option for invariants
invariants(...,SubringLimit=>...)
-- GB option for invariants
invariants(...,UseCoefficientRing=>...)
-- option to compute invariants over the given coefficient ring
invariants(...,UseLinearAlgebra=>...)
-- strategy for computing invariants of finite groups
invariants(DiagonalAction)
-- computes the generating invariants of a group action
invariants(FiniteGroupAction)
-- computes the generating invariants of a group action
invariants(FiniteGroupAction,ZZ)
-- basis for graded component of invariant ring
invariants(LinearlyReductiveAction)
-- invariant generators of Hilbert ideal
invariants(LinearlyReductiveAction,ZZ)
-- basis for graded component of invariant ring
isAbelian
-- check whether a finite matrix group is Abelian
isInvariant
-- check whether a polynomial is invariant under a group action
LinearlyReductiveAction
-- the class of all (non finite, non toric) linearly reductive group actions
linearlyReductiveAction
-- Linearly reductive group action
molienSeries
-- computes the Molien (Hilbert) series of the invariant ring of a finite group
net(RingOfInvariants)
-- format for printing, as a net
numgens(DiagonalAction)
-- number of generators of the finite part of a diagonal group
numgens(FiniteGroupAction)
-- number of generators of a finite group
permutationMatrix
-- convert a one-line notation or cyclic notation of a permutation to a matrix representation
primaryInvariants
-- computes a list of primary invariants for the invariant ring of a finite group
primaryInvariants(...,Dade=>...)
-- an optional argument for primaryInvariants determining whether to use the Dade algorithm
primaryInvariants(...,DegreeVector=>...)
-- an optional argument for primaryInvariants that finds invariants of certain degrees
rank(DiagonalAction)
-- of a diagonal action
relations(FiniteGroupAction)
-- relations of a finite group
reynoldsOperator
-- the image of a polynomial under the Reynolds operator
ring(GroupAction)
-- the polynomial ring being acted upon
RingOfInvariants
-- the class of the rings of invariants under the action of a finite group, an Abelian group or a linearly reductive group
schreierGraph
-- Schreier graph of a finite group
secondaryInvariants
-- computes secondary invariants for the invariant ring of a finite group
secondaryInvariants(...,PrintDegreePolynomial=>...)
-- an optional argument for secondaryInvariants that determines the printing of an informative polynomial
UseNormaliz
-- option for diagonal invariants
weights
-- of a diagonal action
words
-- associate a word in the generators of a group to each element