i1 : R = QQ[x_1..x_3]
o1 = R
o1 : PolynomialRing
|
i2 : W = matrix{{-1,0,1},{0,-1,1}}
o2 = | -1 0 1 |
| 0 -1 1 |
2 3
o2 : Matrix ZZ <-- ZZ
|
i3 : T = diagonalAction(W, R)
* 2
o3 = R <- (QQ ) via
| -1 0 1 |
| 0 -1 1 |
o3 : DiagonalAction
|
i4 : T.cache.?equivariantHilbert
o4 = false
|
i5 : elapsedTime equivariantHilbertSeries(T, Order => 5)
-- 0.00198027 seconds elapsed
-1 -1 2 2 -2 -1 -1 -2 2
o5 = 1 + (z z + z + z )T + (z z + z + z + z + z z + z )T +
0 1 1 0 0 1 0 1 1 0 1 0
------------------------------------------------------------------------
3 3 2 2 -1 -3 -1 -1 -2 -2 -1 -3 3
(z z + z z + z z + z z + 1 + z + z z + z z + z z + z )T
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
------------------------------------------------------------------------
4 4 3 2 2 3 2 -2 2 -1 -4 -1
+ (z z + z z + z z + z + z z + z z + z + z + z + z +
0 1 0 1 0 1 0 0 1 0 1 1 1 1 0
------------------------------------------------------------------------
-1 -3 -2 -2 -2 -3 -1 -4 4
z z + z z + z z + z z + z )T
0 1 0 1 0 1 0 1 0
o5 : ZZ[z ..z ][T]
0 1
|
i6 : T.cache.?equivariantHilbert
o6 = true
|
i7 : elapsedTime equivariantHilbertSeries(T, Order => 5);
-- 0.000365144 seconds elapsed
|