Macaulay2 » Documentation
Packages » InvariantRing :: action
next | previous | forward | backward | up | index | toc

action -- the group action that produced a ring of invariants

Synopsis

Description

This function is provided by the package InvariantRing.

This example shows how to recover the action of a torus that produced a certain ring of invariants. Note other action types are possible and may produce a different looking output.

i1 : R = QQ[x_1..x_4]

o1 = R

o1 : PolynomialRing
i2 : T = diagonalAction(matrix {{0,1,-1,1},{1,0,-1,-1}}, R)

             * 2
o2 = R <- (QQ )  via 

     | 0 1 -1 1  |
     | 1 0 -1 -1 |

o2 : DiagonalAction
i3 : S = R^T

o3 =             2
     QQ[x x x , x x x ]
         1 2 3   1 3 4

o3 : RingOfInvariants
i4 : action S

             * 2
o4 = R <- (QQ )  via 

     | 0 1 -1 1  |
     | 1 0 -1 -1 |

o4 : DiagonalAction

Ways to use action :

For the programmer

The object action is a method function.