Macaulay2 » Documentation
Packages » InvariantRing :: actionMatrix
next | previous | forward | backward | up | index | toc

actionMatrix -- matrix of a linearly reductive action

Synopsis

Description

This function is provided by the package InvariantRing.

Suppose the action L consists of the linearly reductive group with coordinate ring S/I (where S is a polynomial ring) acting on a (quotient of) a polynomial ring R via the action matrix M. This function returns the action matrix M.

i1 : S = QQ[z]

o1 = S

o1 : PolynomialRing
i2 : I = ideal(z^2 - 1)

            2
o2 = ideal(z  - 1)

o2 : Ideal of S
i3 : M = matrix{{(z+1)/2, (1-z)/2},{(1-z)/2, (z+1)/2}}

o3 = | 1/2z+1/2  -1/2z+1/2 |
     | -1/2z+1/2 1/2z+1/2  |

             2      2
o3 : Matrix S  <-- S
i4 : R = QQ[x,y]

o4 = R

o4 : PolynomialRing
i5 : L = linearlyReductiveAction(I, M, R)

                   2
o5 = R <- S/ideal(z  - 1) via 

     | 1/2z+1/2  -1/2z+1/2 |
     | -1/2z+1/2 1/2z+1/2  |

o5 : LinearlyReductiveAction
i6 : actionMatrix L

o6 = | 1/2z+1/2  -1/2z+1/2 |
     | -1/2z+1/2 1/2z+1/2  |

             2      2
o6 : Matrix S  <-- S

Ways to use actionMatrix :

For the programmer

The object actionMatrix is a method function.