Macaulay2 » Documentation
Packages » InvariantRing :: rank(DiagonalAction)
next | previous | forward | backward | up | index | toc

rank(DiagonalAction) -- of a diagonal action

Synopsis

Description

This function is provided by the package InvariantRing.

Use this function to recover the rank of the torus factor of a diagonal action.

The following example defines an action of a two-dimensional torus on a polynomial ring in four variables.

i1 : R = QQ[x_1..x_4]

o1 = R

o1 : PolynomialRing
i2 : W = matrix{{0,1,-1,1},{1,0,-1,-1}}

o2 = | 0 1 -1 1  |
     | 1 0 -1 -1 |

              2       4
o2 : Matrix ZZ  <-- ZZ
i3 : T = diagonalAction(W, R)

             * 2
o3 = R <- (QQ )  via 

     | 0 1 -1 1  |
     | 1 0 -1 -1 |

o3 : DiagonalAction
i4 : rank T

o4 = 2

See also

Ways to use this method: