Macaulay2 » Documentation
Packages » Macaulay2Doc » commutative algebra » rank
next | previous | forward | backward | up | index | toc

rank -- compute the rank

Description

i1 : R = ZZ/101[x,y,z]

o1 = R

o1 : PolynomialRing
i2 : p = vars R;

             1      3
o2 : Matrix R  <-- R
i3 : rank kernel p

o3 = 2
i4 : rank cokernel p

o4 = 0
i5 : C = res cokernel p

      1      3      3      1
o5 = R  <-- R  <-- R  <-- R  <-- 0
                                  
     0      1      2      3      4

o5 : ChainComplex
i6 : rank C

o6 = 0

Ways to use rank:

  • rank(Matrix)
  • rank(Module)
  • rank(MutableMatrix)

For the programmer

The object rank is a method function.


The source of this document is in Macaulay2Doc/functions/rank-doc.m2:29:0.