Macaulay2 » Documentation
Packages » Macaulay2Doc » commutative algebra » dim
next | previous | forward | backward | up | index | toc

dim -- compute the Krull dimension

Caveat

To compute the dimension of a vector space, one should use rank.

Over the integers, the computation effectively tensors first with the rational numbers, yielding the wrong answer in some cases.

See also

Ways to use dim:

  • dim(Ideal) -- compute the Krull dimension
  • dim(MonomialIdeal) -- see dim(Ideal) -- compute the Krull dimension
  • dim(Module) -- compute the Krull dimension
  • dim(ProjectiveHilbertPolynomial) -- the degree of the Hilbert polynomial
  • dim(FractionField) -- see dim(Ring) -- compute the Krull dimension
  • dim(GaloisField) -- see dim(Ring) -- compute the Krull dimension
  • dim(InexactField) -- see dim(Ring) -- compute the Krull dimension
  • dim(PolynomialRing) -- see dim(Ring) -- compute the Krull dimension
  • dim(QuotientRing) -- see dim(Ring) -- compute the Krull dimension
  • dim(Ring) -- compute the Krull dimension

For the programmer

The object dim is a method function.


The source of this document is in Macaulay2Doc/functions/dim-doc.m2:16:0.