dim M
i1 : R = ZZ/31991[a,b,c,d] o1 = R o1 : PolynomialRing
i2 : I = monomialCurveIdeal(R,{1,2,3}) 2 2 o2 = ideal (c - b*d, b*c - a*d, b - a*c) o2 : Ideal of R
i3 : M = Ext^1(I,R) o3 = cokernel {-3} | a -b c | {-3} | b -c d | 2 o3 : R-module, quotient of R
i4 : dim M o4 = 2
i5 : N = Ext^0(I,R) o5 = image {-2} | c2-bd | {-2} | bc-ad | {-2} | b2-ac | 3 o5 : R-module, submodule of R
i6 : dim N o6 = 4