Macaulay2 » Documentation
Packages » InvariantRing :: numgens(DiagonalAction)
next | previous | forward | backward | up | index | toc

numgens(DiagonalAction) -- number of generators of the finite part of a diagonal group

Synopsis

Description

This function is provided by the package InvariantRing.

Writing the diagonal group acting on the polynomial ring $k[x_1,\dots,x_n]$ as $(k^*)^r \times \mathbb{Z}/d_1 \times \cdots \times \mathbb{Z}/d_g$, this function returns g.

Here is an example of a product of two cyclic groups of order 3 acting on a polynomial ring in 3 variables.

i1 : R = QQ[x_1..x_3]

o1 = R

o1 : PolynomialRing
i2 : d = {3,3}

o2 = {3, 3}

o2 : List
i3 : W = matrix{{1,0,1},{0,1,1}}

o3 = | 1 0 1 |
     | 0 1 1 |

              2       3
o3 : Matrix ZZ  <-- ZZ
i4 : A = diagonalAction(W, d, R)

o4 = R <- ZZ/3 x ZZ/3 via 

     | 1 0 1 |
     | 0 1 1 |

o4 : DiagonalAction
i5 : numgens A

o5 = 2

Ways to use this method: