generators G
Use this function to get the user-defined generators of a group action.
The following example defines the permutation action of a symmetric group on three elements using three transpositions.
i1 : R = QQ[x_1..x_3] o1 = R o1 : PolynomialRing
i2 : L = {matrix {{0,1,0},{1,0,0},{0,0,1}}, matrix {{0,0,1},{0,1,0},{1,0,0}}, matrix {{1,0,0},{0,0,1},{0,1,0}} } o2 = {| 0 1 0 |, | 0 0 1 |, | 1 0 0 |} | 1 0 0 | | 0 1 0 | | 0 0 1 | | 0 0 1 | | 1 0 0 | | 0 1 0 | o2 : List
i3 : G = finiteAction(L, R) o3 = R <- {| 0 1 0 |, | 0 0 1 |, | 1 0 0 |} | 1 0 0 | | 0 1 0 | | 0 0 1 | | 0 0 1 | | 1 0 0 | | 0 1 0 | o3 : FiniteGroupAction
i4 : generators G o4 = {| 0 1 0 |, | 0 0 1 |, | 1 0 0 |} | 1 0 0 | | 0 1 0 | | 0 0 1 | | 0 0 1 | | 1 0 0 | | 0 1 0 | o4 : List