Description
This function is provided by the package InvariantRing
When called on a linearly reductive group action and a (multi)degree, it computes an additive basis for the invariants of the action in the given degree.
This function uses an implementation of Algorithm 4.5.1 in:
-
Derksen, H. & Kemper, G. (2015).Computational Invariant Theory. Heidelberg: Springer.
The following example examines the action of the special linear group of degree 2 on the space of binary quadrics. There is a single invariant of degree 2 but no invariant of degree 3.
i1 : S = QQ[a,b,c,d]
o1 = S
o1 : PolynomialRing
|
i2 : I = ideal(a*d - b*c - 1)
o2 = ideal(- b*c + a*d - 1)
o2 : Ideal of S
|
i3 : A = S[u,v]
o3 = A
o3 : PolynomialRing
|
i4 : M = transpose (map(S,A)) last coefficients sub(basis(2,A),{u=>a*u+b*v,v=>c*u+d*v})
o4 = | a2 2ab b2 |
| ac bc+ad bd |
| c2 2cd d2 |
3 3
o4 : Matrix S <-- S
|
i5 : R = QQ[x_1..x_3]
o5 = R
o5 : PolynomialRing
|
i6 : V = linearlyReductiveAction(I,M,R)
o6 = R <- S/ideal(- b*c + a*d - 1) via
| a2 2ab b2 |
| ac bc+ad bd |
| c2 2cd d2 |
o6 : LinearlyReductiveAction
|
i7 : invariants(V,2)
2
o7 = {x - 4x x }
2 1 3
o7 : List
|
i8 : invariants(V,3)
o8 = {}
o8 : List
|