Description
This function is provided by the package InvariantRing.
This optional argument allows the user to provide an upper bound for the degree of the generating invariants of a finite group action. If no upper bound is provided, the order of the group is used as an upper bound. Providing a smaller upper bound may speed up the computation of invariants. However, if the value provided is too small the resulting list may not generate the ring of invariants.
The following example computes the invariants of the symmetric group on 4 elements.
i1 : R = QQ[x_1..x_4]
o1 = R
o1 : PolynomialRing
|
i2 : L = apply({"2134","2341"},permutationMatrix);
|
i3 : S4 = finiteAction(L,R)
o3 = R <- {| 0 1 0 0 |, | 0 0 0 1 |}
| 1 0 0 0 | | 1 0 0 0 |
| 0 0 1 0 | | 0 1 0 0 |
| 0 0 0 1 | | 0 0 1 0 |
o3 : FiniteGroupAction
|
i4 : elapsedTime invariants S4
-- 1.21811 seconds elapsed
2 2 2 2 3 3 3 3 4 4 4
o4 = {x + x + x + x , x + x + x + x , x + x + x + x , x + x + x +
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
------------------------------------------------------------------------
4
x }
4
o4 : List
|
i5 : elapsedTime invariants(S4,DegreeBound=>4)
-- 1.00984 seconds elapsed
Warning: stopping condition not met!
Output may not generate the entire ring of invariants.
Increase value of DegreeBound.
2 2 2 2 3 3 3 3 4 4 4
o5 = {x + x + x + x , x + x + x + x , x + x + x + x , x + x + x +
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
------------------------------------------------------------------------
4
x }
4
o5 : List
|