Macaulay2 » Documentation
Packages » InvariantRing :: invariants(...,DegreeLimit=>...)
next | previous | forward | backward | up | index | toc

invariants(...,DegreeLimit=>...) -- GB option for invariants

Description

The computation of invariants of linearly reductive group actions requires the use of Gröbner bases. These options allow partial control over the computation performed by invariants(LinearlyReductiveAction) and hilbertIdeal(LinearlyReductiveAction), allowing to terminate the computation after reaching a certain degree. For more information, see gb.

See also

Functions with optional argument named DegreeLimit:

  • compose(Module,Module,Module,DegreeLimit=>...) -- see compose -- composition as a pairing on Hom-modules
  • End(...,DegreeLimit=>...) -- see End -- module of endomorphisms
  • gb(...,DegreeLimit=>...) -- see gb -- compute a Gröbner basis
  • Hom(...,DegreeLimit=>...) -- see Hom -- module of homomorphisms
  • homomorphism'(...,DegreeLimit=>...) -- see homomorphism' -- get the element of Hom from a homomorphism
  • hilbertIdeal(...,DegreeLimit=>...)
  • invariants(...,DegreeLimit=>...) -- GB option for invariants
  • minimalBetti(...,DegreeLimit=>...) -- see minimalBetti -- minimal betti numbers of (the minimal free resolution of) a homogeneous ideal or module
  • pushForward(...,DegreeLimit=>...) -- see pushForward(RingMap,Module) -- compute the pushforward of a module along a ring map
  • quotient(...,DegreeLimit=>...) (missing documentation)
  • saturate(...,DegreeLimit=>...) (missing documentation)
  • syz(...,DegreeLimit=>...) -- see syz(Matrix) -- compute the syzygy matrix

Further information

  • Default value: {}
  • Function: invariants -- computes the generating invariants of a group action
  • Option key: DegreeLimit -- an optional argument

The source of this document is in InvariantRing/InvariantsDoc.m2:703:0.