Description
Currently,
R and
S must both be polynomial rings over the same base field.
This function first checks to see whether M will be a finitely generated R-module via F. If not, an error message describing the codimension of M/(vars of S)M is given (this is equal to the dimension of R if and only if M is a finitely generated R-module.
Assuming that it is, the push forward
F_*(M) is computed. This is done by first finding a presentation for
M in terms of a set of elements that generates
M as an
S-module, and then applying the routine
coimage to a map whose target is
M and whose source is a free module over
R.
Example: The Auslander-Buchsbaum formula
Let's illustrate the Auslander-Buchsbaum formula. First construct some rings and make a module of projective dimension 2.
i1 : R4 = ZZ/32003[a..d];
|
i2 : R5 = ZZ/32003[a..e];
|
i3 : R6 = ZZ/32003[a..f];
|
i4 : M = coker genericMatrix(R6,a,2,3)
o4 = cokernel | a c e |
| b d f |
2
o4 : R6-module, quotient of R6
|
i5 : pdim M
o5 = 2
|
Create ring maps.
i6 : G = map(R6,R5,{a+b+c+d+e+f,b,c,d,e})
o6 = map (R6, R5, {a + b + c + d + e + f, b, c, d, e})
o6 : RingMap R6 <-- R5
|
i7 : F = map(R5,R4,random(R5^1, R5^{4:-1}))
o7 = map (R5, R4, {107a + 4376b - 5570c + 3187d + 3783e, - 5307a + 8570b - 15344c + 8444d - 10480e, 10359a - 7464b - 8251c + 2653d + 5071e, - 6203a + 12365b - 13508c - 9480d - 11950e})
o7 : RingMap R5 <-- R4
|
The module M, when thought of as an R5 or R4 module, has the same depth, but since depth M + pdim M = dim ring, the projective dimension will drop to 1, respectively 0, for these two rings.
i8 : P = pushForward(G,M)
o8 = cokernel | c -de |
| d bc-ad+bd+cd+d2+de |
2
o8 : R5-module, quotient of R5
|
i9 : pdim P
o9 = 1
|
i10 : Q = pushForward(F,P)
3
o10 = R4
o10 : R4-module, free, degrees {0..1, 0}
|
i11 : pdim Q
o11 = 0
|
Example: generic projection of a homogeneous coordinate ring
We compute the pushforward N of the homogeneous coordinate ring M of the twisted cubic curve in P^3.
i12 : P3 = QQ[a..d];
|
i13 : M = comodule monomialCurveIdeal(P3,{1,2,3})
o13 = cokernel | c2-bd bc-ad b2-ac |
1
o13 : P3-module, quotient of P3
|
The result is a module with the same codimension, degree and genus as the twisted cubic, but the support is a cubic in the plane, necessarily having one node.
i14 : P2 = QQ[a,b,c];
|
i15 : F = map(P3,P2,random(P3^1, P3^{-1,-1,-1}))
8 4 4 9 5 8 10 3 1 7 2
o15 = map (P3, P2, {-a + 2b + -c + -d, -a + -b + -c + --d, -a + -b + --c + -d})
9 7 7 7 2 7 7 7 3 10 3
o15 : RingMap P3 <-- P2
|
i16 : N = pushForward(F,M)
o16 = cokernel {0} | 2746576531440ab-2534266045640b2-24211900548045ac+23443561995420bc-14394825893700c2 41713631071245a2-35589962516920b2-617284418550345ac+601115991475020bc-382187702981700c2 3911698210192282843849600b3-66754622794389240566784600b2c-3649526991392070087758253375ac2+3478861359062826352315326900bc2-2372019008234318457722851500c3 0 |
{1} | -1917669755925a+2274660185954b-8894633060340c -41832913217265a+52275870074434b-238856615455140c -1498815844682001881230562400a2+2547688606736205330917173872ab-1049823644956341399785147872b2-3147838871484802066664262615ac+2570016678191191391969780310bc-2690990325409766765255811900c2 3104325504225a3-8141096469258a2b+7037566250256ab2-1999589995808b3+7766700637860a2c-13411647220680abc+5703323436000b2c+6283781809200ac2-5281643577600bc2+1508835384000c3 |
2
o16 : P2-module, quotient of P2
|
i17 : hilbertPolynomial M
o17 = - 2*P + 3*P
0 1
o17 : ProjectiveHilbertPolynomial
|
i18 : hilbertPolynomial N
o18 = - 2*P + 3*P
0 1
o18 : ProjectiveHilbertPolynomial
|
i19 : ann N
3 2 2
o19 = ideal(3104325504225a - 8141096469258a b + 7037566250256a*b -
-----------------------------------------------------------------------
3 2
1999589995808b + 7766700637860a c - 13411647220680a*b*c +
-----------------------------------------------------------------------
2 2 2
5703323436000b c + 6283781809200a*c - 5281643577600b*c +
-----------------------------------------------------------------------
3
1508835384000c )
o19 : Ideal of P2
|
Note: these examples are from the original Macaulay script by David Eisenbud.