Macaulay2 » Documentation
Packages » InvariantRing :: invariants(...,SubringLimit=>...)
next | previous | forward | backward | up | index | toc

invariants(...,SubringLimit=>...) -- GB option for invariants

Description

The computation of invariants of linearly reductive group actions requires the use of Gröbner bases. These options allow partial control over the computation performed by invariants(LinearlyReductiveAction) and hilbertIdeal(LinearlyReductiveAction), allowing to terminate the computation after a certain number of invariants are obtained. For more information, see gb.

See also

Functions with optional argument named SubringLimit:

Further information

  • Default value: infinity
  • Function: invariants -- computes the generating invariants of a group action
  • Option key: SubringLimit -- an optional argument

The source of this document is in InvariantRing/InvariantsDoc.m2:726:0.