M^**i
i1 : R = QQ[a..d];
i2 : I = monomialCurveIdeal(R,{1,3,4}) 3 2 2 2 3 2 o2 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c) o2 : Ideal of R
i3 : M = Ext^1(I,R^{-4}) o3 = cokernel {1} | c 0 -d 0 -b | {1} | b c 0 a 0 | {1} | 0 d c b a | 3 o3 : R-module, quotient of R
i4 : M^**2 o4 = cokernel {2} | c 0 -d 0 -b 0 0 0 0 0 0 0 0 0 0 c 0 -d 0 -b 0 0 0 0 0 0 0 0 0 0 | {2} | b c 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 -d 0 -b 0 0 0 0 0 | {2} | 0 d c b a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 -d 0 -b | {2} | 0 0 0 0 0 c 0 -d 0 -b 0 0 0 0 0 b c 0 a 0 0 0 0 0 0 0 0 0 0 0 | {2} | 0 0 0 0 0 b c 0 a 0 0 0 0 0 0 0 0 0 0 0 b c 0 a 0 0 0 0 0 0 | {2} | 0 0 0 0 0 0 d c b a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b c 0 a 0 | {2} | 0 0 0 0 0 0 0 0 0 0 c 0 -d 0 -b 0 d c b a 0 0 0 0 0 0 0 0 0 0 | {2} | 0 0 0 0 0 0 0 0 0 0 b c 0 a 0 0 0 0 0 0 0 d c b a 0 0 0 0 0 | {2} | 0 0 0 0 0 0 0 0 0 0 0 d c b a 0 0 0 0 0 0 0 0 0 0 0 d c b a | 9 o4 : R-module, quotient of R