Macaulay2 » Documentation
Packages » Macaulay2Doc :: Module ^** ZZ
next | previous | forward | backward | up | index | toc

Module ^** ZZ -- tensor power

Synopsis

Description

The second symmetric power of the canonical module of the rational quartic:
i1 : R = QQ[a..d];
i2 : I = monomialCurveIdeal(R,{1,3,4})

                        3      2     2    2    3    2
o2 = ideal (b*c - a*d, c  - b*d , a*c  - b d, b  - a c)

o2 : Ideal of R
i3 : M = Ext^1(I,R^{-4})

o3 = cokernel {1} | c 0 -d 0 -b |
              {1} | b c 0  a 0  |
              {1} | 0 d c  b a  |

                            3
o3 : R-module, quotient of R
i4 : M^**2

o4 = cokernel {2} | c 0 -d 0 -b 0 0 0  0 0  0 0 0  0 0  c 0 -d 0 -b 0 0 0  0 0  0 0 0  0 0  |
              {2} | b c 0  a 0  0 0 0  0 0  0 0 0  0 0  0 0 0  0 0  c 0 -d 0 -b 0 0 0  0 0  |
              {2} | 0 d c  b a  0 0 0  0 0  0 0 0  0 0  0 0 0  0 0  0 0 0  0 0  c 0 -d 0 -b |
              {2} | 0 0 0  0 0  c 0 -d 0 -b 0 0 0  0 0  b c 0  a 0  0 0 0  0 0  0 0 0  0 0  |
              {2} | 0 0 0  0 0  b c 0  a 0  0 0 0  0 0  0 0 0  0 0  b c 0  a 0  0 0 0  0 0  |
              {2} | 0 0 0  0 0  0 d c  b a  0 0 0  0 0  0 0 0  0 0  0 0 0  0 0  b c 0  a 0  |
              {2} | 0 0 0  0 0  0 0 0  0 0  c 0 -d 0 -b 0 d c  b a  0 0 0  0 0  0 0 0  0 0  |
              {2} | 0 0 0  0 0  0 0 0  0 0  b c 0  a 0  0 0 0  0 0  0 d c  b a  0 0 0  0 0  |
              {2} | 0 0 0  0 0  0 0 0  0 0  0 d c  b a  0 0 0  0 0  0 0 0  0 0  0 d c  b a  |

                            9
o4 : R-module, quotient of R

Ways to use this method: