Macaulay2 » Documentation
Packages » Macaulay2Doc » rings » basic rings of numbers
next | previous | forward | backward | up | index | toc

basic rings of numbers

The following rings are initially present in every session with Macaulay2. The names of some of these rings are double letters so the corresponding symbols with single letters are preserved for use as variables.

Numbers in these rings are constructed as follows.
i1 : 1234

o1 = 1234
i2 : 123/4

     123
o2 = ---
      4

o2 : QQ
i3 : 123.4

o3 = 123.4

o3 : RR (of precision 53)
i4 : 1.234e-20

o4 = 1.234e-20

o4 : RR (of precision 53)
i5 : 123+4*ii

o5 = 123+4*ii

o5 : CC (of precision 53)
Integers may be entered in bases 2, 8, or 16 using particular prefixes.
i6 : 0b10011010010 -- binary

o6 = 1234
i7 : 0o2322 -- octal

o7 = 1234
i8 : 0x4d2 -- hexadecimal

o8 = 1234
The usual arithmetic operations are available.
i9 : 4/5 + 2/3

     22
o9 = --
     15

o9 : QQ
i10 : 10^20

o10 = 100000000000000000000
i11 : 3*5*7

o11 = 105
i12 : 3.1^2.1

o12 = 10.76117160609969

o12 : RR (of precision 53)
i13 : sqrt 3.

o13 = 1.732050807568877

o13 : RR (of precision 53)
An additional pair of division operations that produce integer quotients and remainders is available.
i14 : 1234//100

o14 = 12
i15 : 1234%100

o15 = 34
Numbers can be promoted to larger rings as follows, see RingElement _ Ring.
i16 : 1_QQ

o16 = 1

o16 : QQ
i17 : (2/3)_CC

o17 = .6666666666666666

o17 : CC (of precision 53)
One way to enter real and complex numbers with more precision is to insert the desired number of bits of precision after the letter p at the end of the number, but before the possible e that indicates the exponent of 10.
i18 : 1p300

o18 = 1

o18 : RR (of precision 300)
i19 : 1p300e-30

o19 = 1e-30

o19 : RR (of precision 300)
Numbers can be lifted to smaller rings as follows, see lift.
i20 : x = 2/3*ii/ii

o20 = .6666666666666666

o20 : CC (of precision 53)
i21 : lift(x,RR)

o21 = .6666666666666666

o21 : RR (of precision 53)
i22 : lift(x,QQ)

      2
o22 = -
      3

o22 : QQ

Menu


The source of this document is in Macaulay2Doc/ov_rings.m2:111:0.