Create the ring of integers modulo a prime number
p as follows.
i1 : R = ZZ/101
o1 = R
o1 : QuotientRing
|
We can create elements of the ring as follows.
i2 : 9_R
o2 = 9
o2 : R
|
i3 : 103_R
o3 = 2
o3 : R
|
The usual arithmetic operations are available.
i4 : 9_R * 11_R
o4 = -2
o4 : R
|
i5 : 9_R ^ 11
o5 = 49
o5 : R
|
i6 : 9_R * 11_R == -2_R
o6 = true
|
Find the inverse of an integer modulo a prime as follows.
i7 : 17_R^-1
o7 = 6
o7 : R
|
To view this element as an element of
ZZ use the
lift command.
i8 : lift (17_R^-1, ZZ)
o8 = 6
|