Macaulay2 » Documentation
Packages » Macaulay2Doc » The Macaulay2 language » Type » Ring » degrees(Ring)
next | previous | forward | backward | up | index | toc

degrees(Ring) -- degrees of generators

Description

i1 : R = ZZ/101[x,y,z];
i2 : degrees R

o2 = {{1}, {1}, {1}}

o2 : List
i3 : S = ZZ/101[x,y,z,Degrees => {{2,3},{1,2},{2,0}}];
i4 : degrees S

o4 = {{2, 3}, {1, 2}, {2, 0}}

o4 : List
This function also applies to ideals, modules, and monoids.
i5 : I = ideal"xy2,xyz,y3"

               2          3
o5 = ideal (x*y , x*y*z, y )

o5 : Ideal of S
i6 : degrees I

o6 = {{4, 7}, {5, 5}, {3, 6}}

o6 : List
i7 : degrees R^5

o7 = {{0}, {0}, {0}, {0}, {0}}

o7 : List
i8 : degrees R^{1,2,3,4}

o8 = {{-1}, {-2}, {-3}, {-4}}

o8 : List

See also

Ways to use this method:

  • degrees(FractionField)
  • degrees(Ideal)
  • degrees(Module)
  • degrees(Monoid)
  • degrees(QuotientRing)
  • degrees(Ring) -- degrees of generators

The source of this document is in Macaulay2Doc/functions/degrees-doc.m2:39:0.