factor M
i1 : f = random(ZZ^6, ZZ^4) o1 = | 8 3 8 6 | | 1 7 5 8 | | 3 8 2 6 | | 7 8 3 9 | | 8 5 6 3 | | 3 7 3 7 | 6 4 o1 : Matrix ZZ <-- ZZ
i2 : M = subquotient ( f * diagonalMatrix{2,3,8,21}, f * diagonalMatrix{2*11,3*5*13,0,21*5} ) o2 = subquotient (| 16 9 64 126 |, | 176 585 0 630 |) | 2 21 40 168 | | 22 1365 0 840 | | 6 24 16 126 | | 66 1560 0 630 | | 14 24 24 189 | | 154 1560 0 945 | | 16 15 48 63 | | 176 975 0 315 | | 6 21 24 147 | | 66 1365 0 735 | 6 o2 : ZZ-module, subquotient of ZZ
i3 : factor M ZZ ZZ o3 = ZZ + -- + ------- 5 5*11*13 o3 : Expression of class Sum
The source of this document is in Macaulay2Doc/functions/factor-doc.m2:25:0.