Macaulay2 » Documentation
Packages » Macaulay2Doc :: isQuotientModule
next | previous | forward | backward | up | index | toc

isQuotientModule -- whether something is evidently a quotient of a free module

Synopsis

Description

This function checks if the module M is a quotient of its ambient free module by examining its matrix of generators.
i1 : R = ZZ/101[a,b,c];
i2 : M = R^1/(a^2,b^2,c^2)

o2 = cokernel | a2 b2 c2 |

                            1
o2 : R-module, quotient of R
i3 : isQuotientModule M

o3 = true
The image of a map from a free module to the first generator of M yields an equivalent module that is not presented as a quotient.
i4 : f = M_{0}

o4 = | 1 |

                   1
o4 : Matrix M <-- R
i5 : N = image f

o5 = subquotient (| 1 |, | a2 b2 c2 |)

                               1
o5 : R-module, subquotient of R
i6 : M == N

o6 = true
i7 : isQuotientModule N

o7 = false

See also

Ways to use isQuotientModule :

For the programmer

The object isQuotientModule is a method function.