Macaulay2 » Documentation
Packages » Macaulay2Doc :: isSubmodule
next | previous | forward | backward | up | index | toc

isSubmodule -- whether a module is evidently a submodule of a free module

Synopsis

Description

No computation is done -- M may be a isomorphic to a submodule of a free module although this function will not detect it.
i1 : R = ZZ/5[a,b,c];
i2 : M = R^3;
i3 : isSubmodule M

o3 = true
i4 : N = ideal(a,b) * M

o4 = image | a 0 0 b 0 0 |
           | 0 a 0 0 b 0 |
           | 0 0 a 0 0 b |

                             3
o4 : R-module, submodule of R
i5 : isSubmodule N

o5 = true
i6 : N' = ideal(a,b) * (R^1 / ideal(a^2,b^2,c^2))

o6 = subquotient (| a b |, | a2 b2 c2 |)

                               1
o6 : R-module, subquotient of R
i7 : isSubmodule N'

o7 = false

Ways to use isSubmodule :

For the programmer

The object isSubmodule is a method function.