Description
If f is
a ring element, then it will be interpreted as a one by one matrix.
The kernel is the submodule of M of all elements mapping to zero under
f. Over polynomial rings, this is computed using a Gröbner basis computation.
i1 : R = ZZ/32003[vars(0..10)]
o1 = R
o1 : PolynomialRing
|
i2 : M = genericSkewMatrix(R,a,5)
o2 = | 0 a b c d |
| -a 0 e f g |
| -b -e 0 h i |
| -c -f -h 0 j |
| -d -g -i -j 0 |
5 5
o2 : Matrix R <-- R
|
i3 : ker M
o3 = image {1} | gh-fi+ej |
{1} | -dh+ci-bj |
{1} | df-cg+aj |
{1} | -de+bg-ai |
{1} | ce-bf+ah |
5
o3 : R-module, submodule of R
|