Macaulay2 » Documentation
Packages » Macaulay2Doc » rings » substitution and maps between rings » RingMap » kernel(RingMap)
next | previous | forward | backward | up | index | toc

kernel(RingMap) -- kernel of a ringmap

Description

i1 : R = QQ[a..d];
i2 : S = QQ[s,t];
i3 : F = map(S,R,{s^3, s^2*t, s*t^2, t^3})

                  3   2      2   3
o3 = map (S, R, {s , s t, s*t , t })

o3 : RingMap S <-- R
i4 : ker F

             2                    2
o4 = ideal (c  - b*d, b*c - a*d, b  - a*c)

o4 : Ideal of R
i5 : G = map(S,R,{s^5, s^3*t^2-t, s*t-s, t^5})

                  5   3 2                5
o5 = map (S, R, {s , s t  - t, s*t - s, t })

o5 : RingMap S <-- R
i6 : ker(G, SubringLimit=>1)

            2 10      2   7     2 7      2 2 4     3 5         6       3 3  
o6 = ideal(a c   + 10a b*c  - 5a c  + 25a b c  + 2a c  - 5a*b*c  - 5a*b c  +
     ------------------------------------------------------------------------
         6      5      2 3       3   2       2 3       4      2 2      3 2  
     5a*c  - a*b  + 10a b c - 15a b*c  - 5a*b c  - 5a*b  + 25a b c - 5a c  -
     ------------------------------------------------------------------------
      5    4        3      2           2     2
     c  + a  - 10a*b  + 20a b*c - 10a*b  + 5a c - 5a*b - a)

o6 : Ideal of R
In the case when everything is homogeneous, Hilbert functions are used to speed up the computations.

Caveat

It should be possible to interrupt the computation and restart it, but this has not yet been implemented.

See also

Menu

Ways to use this method:


The source of this document is in Macaulay2Doc/functions/kernel-doc.m2:47:0.