Macaulay2 » Documentation
Packages » Macaulay2Doc :: monomialIdeal(Ideal)
next | previous | forward | backward | up | index | toc

monomialIdeal(Ideal) -- monomial ideal of lead monomials of a Gröbner basis

Synopsis

Description

J may also be a submodule of R^1, for R the ring of J.
i1 : R = ZZ/101[a,b,c];
i2 : I = ideal(a^3,b^3,c^3, a^2-b^2)

             3   3   3   2    2
o2 = ideal (a , b , c , a  - b )

o2 : Ideal of R
i3 : monomialIdeal I	  

                     2     2   3   3
o3 = monomialIdeal (a , a*b , b , c )

o3 : MonomialIdeal of R
i4 : monomialSubideal I

                     3   2      2   3   3
o4 = monomialIdeal (a , a b, a*b , b , c )

o4 : MonomialIdeal of R
If the coefficient ring is ZZ, lead coefficients of the monomials are ignored.
i5 : R = ZZ[x,y]

o5 = R

o5 : PolynomialRing
i6 : monomialIdeal ideal(2*x,3*y)

o6 = monomialIdeal (x, y)

o6 : MonomialIdeal of R

See also

Ways to use this method: