Macaulay2 » Documentation
Packages » Macaulay2Doc :: monomialIdeal(Matrix)
next | previous | forward | backward | up | index | toc

monomialIdeal(Matrix) -- monomial ideal of lead monomials

Synopsis

Description

If L is a matrix, then it must have only one row. For all of these types, the result is generated by only the lead monomials given: no Gröbner bases are computed. See monomialIdeal(Ideal) if the lead monomials of a Gröbner basis is desired.
i1 : R = ZZ/101[a,b,c];
i2 : I = monomialIdeal(a^3,b^3,c^3, a^2-b^2)

                     2   3   3
o2 = monomialIdeal (a , b , c )

o2 : MonomialIdeal of R
i3 : M = monomialIdeal vars R

o3 = monomialIdeal (a, b, c)

o3 : MonomialIdeal of R
i4 : J = monomialIdeal 0_R

o4 = monomialIdeal ()

o4 : MonomialIdeal of R
If the coefficient ring is ZZ, lead coefficients of the monomials are ignored.
i5 : R = ZZ[x,y]

o5 = R

o5 : PolynomialRing
i6 : monomialIdeal(2*x,3*y)

o6 = monomialIdeal (x, y)

o6 : MonomialIdeal of R

See also

Ways to use this method: