Macaulay2 » Documentation
Packages » Macaulay2Doc » matrices » Matrix » smithNormalForm(Matrix)
next | previous | forward | backward | up | index | toc

smithNormalForm(Matrix) -- smith normal form for a matrix over a PID

Description

This function produces a diagonal matrix D, and invertible matrices P and Q such that D = PMQwith diagonal entries d1, d2, ..., dn of D satisfying d1|d2|...|dn.
i1 : M = matrix{{1,2,3},{1,34,45},{2213,1123,6543},{0,0,0}}

o1 = | 1    2    3    |
     | 1    34   45   |
     | 2213 1123 6543 |
     | 0    0    0    |

              4       3
o1 : Matrix ZZ  <-- ZZ
i2 : (D,P,Q) = smithNormalForm M

o2 = (| 1 0 0      |, | 1  -102182 -43292 0 |, | 129506 17567889865
      | 0 1 0      |  | -1 102183  -92361 0 |  | 70085  9507247241 
      | 0 0 135654 |  | 1  -102183 92362  0 |  | -55831 -7573648009
      | 0 0 0      |  | 0  0       0      1 |
     ------------------------------------------------------------------------
     2383136963911713  |)
     1289686610013066  |
     -1027388073388531 |

o2 : Sequence
i3 : D == P * M * Q

o3 = true
i4 : (D,P) = smithNormalForm(M, ChangeMatrix=>{true,false}, KeepZeroes=>false)

o4 = (| 1 0 0      |, | 1  -102182 -43292 0 |)
      | 0 1 0      |  | -1 102183  -92361 0 |
      | 0 0 135654 |  | 1  -102183 92362  0 |

o4 : Sequence
i5 : D = smithNormalForm(M, ChangeMatrix=>{false,false})

o5 = | 1 0 0      |
     | 0 1 0      |
     | 0 0 135654 |
     | 0 0 0      |

              4       3
o5 : Matrix ZZ  <-- ZZ

This function is the underlying routine used by minimalPresentation in the case when the ring is ZZ, or a polynomial ring in one variable over a field.

i6 : prune coker M

o6 = cokernel | 135654 |
              | 0      |

                              2
o6 : ZZ-module, quotient of ZZ
In the following example, we test the result be checking that the entries of D1, P1 M Q1 are the same. The degrees associated to these matrices do not match up, so a simple test of equality would return false.
i7 : S = ZZ/101[t]

o7 = S

o7 : PolynomialRing
i8 : D = diagonalMatrix{t^2+1, (t^2+1)^2, (t^2+1)^3, (t^2+1)^5}

o8 = | t2+1 0        0            0                       |
     | 0    t4+2t2+1 0            0                       |
     | 0    0        t6+3t4+3t2+1 0                       |
     | 0    0        0            t10+5t8+10t6+10t4+5t2+1 |

             4      4
o8 : Matrix S  <-- S
i9 : P = random(S^4, S^4)

o9 = | 24  19  -8  -38 |
     | -36 19  -22 -16 |
     | -30 -10 -29 39  |
     | -29 -29 -24 21  |

             4      4
o9 : Matrix S  <-- S
i10 : Q = random(S^4, S^4)

o10 = | 34  -18 -28 16  |
      | 19  -13 -47 22  |
      | -47 -43 38  45  |
      | -39 -15 2   -34 |

              4      4
o10 : Matrix S  <-- S
i11 : M = P*D*Q

o11 = | -33t10+37t8+46t6+48t4-24t2+5 -36t10+22t8-16t6+21t4+27t2+33
      | 18t10-11t8+2t6+7t4-37t2-13   38t10-12t8+13t6+42t4-50t2-29 
      | -6t10-30t8-10t6+t4+33t2+46   21t10+4t8+43t6+41t4+19       
      | -11t10+46t8+8t6-4t4+29t2-16  -12t10+41t8+3t6+20t4-31t2    
      -----------------------------------------------------------------------
      25t10+24t8+47t6-40t4-13t2-26  -21t10-4t8+36t6+37t4+35t2+17 |
      -32t10+42t8-45t6+16t4-12t2-46 39t10-7t8+6t6-41t4+10t2+2    |
      -23t10-14t8-19t6-36t4-25t2-17 -13t10+36t8-21t6-23t4+49t2+2 |
      42t10+8t8+13t6-44t4+2t2-8     -7t10-35t8-39t6-9t4+35t2+33  |

              4      4
o11 : Matrix S  <-- S
i12 : (D1,P1,Q1) = smithNormalForm M;
i13 : D1 - P1*M*Q1 == 0

o13 = true
i14 : prune coker M

o14 = cokernel | t2+1 0        0            0                       |
               | 0    t4+2t2+1 0            0                       |
               | 0    0        t6+3t4+3t2+1 0                       |
               | 0    0        0            t10+5t8+10t6+10t4+5t2+1 |

                             4
o14 : S-module, quotient of S
The key idea of the current implementation is as follows: compute a Gröbner basis, transpose the generators, and repeat, until we encounter a matrix whose transpose is already a Gröbner basis.

Caveat

The behavior of this function is not defined when the ring is not a PID.

See also

Ways to use this method:


The source of this document is in Macaulay2Doc/functions/smithNormalForm-doc.m2:52:0.